Activation of p53/miR-34a Tumor Suppressor Axis by Chinese Herbal Formula JP-1 in A549 Lung Adenocarcinoma Cells.

Evid Based Complement Alternat Med

Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.

Published: December 2016

AI Article Synopsis

  • * MiR-34a, a crucial tumor suppressor influenced by the p53 gene, is often underexpressed in LADC, and promoting its activity may counteract cancer cell growth and spread.
  • * A Chinese herbal formula called JP-1 has been shown to enhance the p53/miR-34a pathway in LADC cells, leading to reduced cell proliferation and increased apoptosis, highlighting its potential as a supportive treatment option for this deadly cancer.

Article Abstract

Lung cancer is the leading cause of cancer death worldwide; the most common pathologic type is lung adenocarcinoma (LADC). In spite of the recent progress in targeted therapy, most LADC patients eventually expired due to the inevitable recurrence and drug resistance. New complementary agent with evidence-based molecular mechanism is urgently needed. MiR-34a is an important p53 downstream tumor suppressor, which regulates apoptosis, cell-cycle, EMT (epithelial mesenchymal transition), and so forth. Its expression is deficient in many types of cancers including LADC. Here, we show that a Chinese herbal formula JP-1 activates p53/miR-34a axis in A549 human LADC cells (p53 wild-type). Treatment with JP-1 induces p53 and its downstream p21 and BAX proteins as well as the miR-34a, resulting in growth inhibition, colony formation reduction, migration repression, and apoptosis induction. Accordingly, the decreases of miR-34a downstream targets such as CDK6, SIRT1, c-Myc, survivin, Snail, and AXL were observed. Moreover, JP-1 activates AMPK and reduces mTOR activity, implying its inhibitory effect on the energy-sensitive protein synthesis and cell proliferation signaling. Our results show that JP-1 activates p53/miR-34a tumor suppressor axis and decreases proteins related to proliferation, apoptosis resistance, and metastasis, suggesting its potential as a complementary medicine for LADC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5203917PMC
http://dx.doi.org/10.1155/2016/5989681DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
12
jp-1 activates
12
p53/mir-34a tumor
8
suppressor axis
8
chinese herbal
8
herbal formula
8
formula jp-1
8
lung adenocarcinoma
8
p53 downstream
8
activates p53/mir-34a
8

Similar Publications

Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells.

Nat Commun

December 2024

The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

RHOBTB2 is a member of the Rho GTPases subfamily of signaling proteins, known tumor suppressors whose loss of function and decreased expression is associated with cancer onset. Beyond its cancer-related role, RHOBTB2 is implicated in rare neurodevelopmental disorders, specifically -related disorders, recognized in 2018 as a subtype of developmental and epileptic encephalopathies (DEE). Common symptoms of these disorders include early-onset epilepsy, severe intellectual disability, microcephaly, and movement disorders.

View Article and Find Full Text PDF

Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease.

Noncoding RNA Res

April 2025

Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.

MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers.

View Article and Find Full Text PDF

Insights into targeting LKB1 in tumorigenesis.

Genes Dis

March 2025

The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada.

Genetic alterations to serine-threonine kinase 11 () have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by ) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!