Electrochemical monitoring of native catalase activity in skin using skin covered oxygen electrode.

Biosens Bioelectron

Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden. Electronic address:

Published: July 2017

A skin covered oxygen electrode, SCOE, was constructed with the aim to study the enzyme catalase, which is part of the biological antioxidative system present in skin. The electrode was exposed to different concentrations of HO and the amperometric current response was recorded. The observed current is due to HO penetration through the outermost skin barrier (referred to as the stratum corneum, SC) and subsequent catalytic generation of O by catalase present in the underlying viable epidermis and dermis. By tape-stripping the outermost skin layers we demonstrate that SC is a considerable diffusion barrier for HO penetration. Our experiments also indicate that skin contains a substantial amount of catalase, which is sufficient to detoxify HO that reaches the viable epidermis after exposure of skin to high concentrations of peroxide (0.5-1mM HO). Further, we demonstrate that the catalase activity is reduced at acidic pH, as compared with the activity at pH 7.4. Finally, experiments with often used penetration enhancer thymol shows that this compound interferes with the catalase reaction. Health aspect of this is briefly discussed. Summarizing, the results of this work show that the SCOE can be utilized to study a broad spectrum of issues involving the function of skin catalase in particular, and the native biological antioxidative system in skin in general.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2017.01.001DOI Listing

Publication Analysis

Top Keywords

skin
10
catalase activity
8
skin covered
8
covered oxygen
8
oxygen electrode
8
biological antioxidative
8
antioxidative system
8
system skin
8
outermost skin
8
viable epidermis
8

Similar Publications

Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.

View Article and Find Full Text PDF

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions.

Nat Commun

December 2024

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a versatile platform for the investigation of these effects free of geometric restrictions.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!