Panic patients experience recurrent panic attacks. Two main neurochemical hypotheses have been proposed to explain this vulnerability. The first suggests that panic patients have deficient serotonergic inhibition of neurons localized in the dorsal periaqueductal gray matter of the midbrain that organizes defensive reactions to cope with proximal threats as well as of sympathomotor control areas of the rostral ventrolateral medulla that generate neurovegetative symptoms of the panic attack. The second proposes that endogenous opioids buffer panic attacks in normal subjects, and their deficit results in heightened sensitivity to suffocation and separation anxiety in panic patients. Experimental results obtained in rat models of panic indicate that serotonin interacts synergistically with endogenous opioids in the dorsal periaqueductal gray through 5-HT1A and μ-opioid receptors to inhibit proximal defense and, supposedly, panic attacks. These findings allow reconciliation of the serotonergic and opioidergic hypotheses of panic pathophysiology. They also indicate that endogenous opioids are likely to participate in the panicolytic action of antidepressants and suggest that exogenous opioids may be useful for treating panic patients resistant to conventional pharmacotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2016.10.013 | DOI Listing |
J Agric Food Chem
January 2025
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway.
This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs ( = 24), while they were less represented in tetraploid emmer ( = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs.
View Article and Find Full Text PDFPain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief . While µ opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the posterior periaqueductal gray is a critical hub for nociception and endogenous analgesia mediated by opioid signaling .
View Article and Find Full Text PDFIntroduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.
View Article and Find Full Text PDFNeuropsychopharmacol Rep
March 2025
Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
Aim: We aimed to create a rat model of drug-induced parkinsonism and tardive dyskinesia by chronic administration of haloperidol and examine the expression of direct and indirect pathway markers in the striatum of the model rats.
Methods: We treated 21 rats, 14 with haloperidol decanoate and 7 with placebo. The number of vacuous chewing movements per 2 min was counted, and haloperidol-treated rats were classified into two groups: mild and severe tardive dyskinesia.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008.
Pain is a signal of inflammation that can have both protective and pathogenic effects. Macrophages, significant components of the immune system, play crucial roles in the occurrence and development of pain, particularly in neuroimmune communication. Macrophages exhibit plasticity and heterogeneity, adopting either pro-inflammatory M1 or anti-inflammatory M2 phenotypes depending on their functional orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!