Photosynthesis in the ciliate Mesodinium rubrum is achieved using a consortium of cryptophyte algal organelles enclosed in its specialized vacuole. A time-series microarray analysis was conducted on the photosynthetic ciliate using an oligochip containing 15,654 primers designed from EST data of the cryptophyte prey, Teleaulax amphioxeia. The cryptophycean nuclei were transcriptionally active over 13 weeks and approximately 13.5% of transcripts in the ciliate came from the sequestered nuclei. The cryptophyte nuclei and chloroplasts could divide in the ciliate, which were loosely synchronized with host cell division. A large epigenetic modification occurred after the cryptophyte nuclei were sequestered into the ciliate. Most cryptophyte genes involved in the light and dark reactions of photosynthesis, chlorophyll assimilation, as well as in DNA methylation, were consistently up-regulated in the ciliate. The imbalance of division rate between the sequestered cryptophyte nuclei and host nuclei may be the reason for the eventual cessation of the kleptoplastidy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2015.12.004DOI Listing

Publication Analysis

Top Keywords

cryptophyte nuclei
12
ciliate mesodinium
8
mesodinium rubrum
8
cryptophyte
7
ciliate
7
nuclei
6
cryptophyte gene
4
gene regulation
4
regulation kleptoplastidic
4
kleptoplastidic karyokleptic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!