Transportable hyperpolarized metabolites.

Nat Commun

Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences et Ingénierie Chimiques, Lausanne 1015, Switzerland.

Published: January 2017

Nuclear spin hyperpolarization of C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234073PMC
http://dx.doi.org/10.1038/ncomms13975DOI Listing

Publication Analysis

Top Keywords

transportable hyperpolarized
4
hyperpolarized metabolites
4
metabolites nuclear
4
nuclear spin
4
spin hyperpolarization
4
hyperpolarization c-labelled
4
c-labelled metabolites
4
metabolites dissolution
4
dissolution dynamic
4
dynamic nuclear
4

Similar Publications

Carbonic anhydrases (CAs) are the main enzymes handling bicarbonate in the different cell compartments. This study analyses the expression of CAs in roots of Arabidopsis thaliana demes differing in tolerance to bicarbonate: the tolerant A1 deme and the sensitive deme, T6. Exposure to 10 mM NaCl caused a transient depolarization of the root cell membranes, and in contrast, the supply of 10 mM NaHCO caused hyperpolarization.

View Article and Find Full Text PDF

Spinal Nerve Axotomy: Effects on I In Vivo and HCNs in DRG Neurons.

Int J Mol Sci

November 2024

Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China.

In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (I) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with I is lacking. In this study, I was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA).

View Article and Find Full Text PDF

The routing of blood flow throughout the brain vasculature is precisely controlled by mechanisms that serve to maintain a fine balance between local neuronal demands and vascular supply of nutrients. We recently identified two capillary endothelial cell (cEC)-based mechanisms that control cerebral blood flow in vivo: 1) electrical signaling, mediated by extracellular K-dependent activation of strong inward rectifying K (Kir2.1) channels, which are steeply activated by hyperpolarization and thus are capable of cell-to-cell propagation, and 2) calcium (Ca) signaling, which reflects release of Ca via the inositol 1,4,5-trisphosphate receptor (IPR)-a target of G-protein-coupled receptor signaling.

View Article and Find Full Text PDF

Competitive modulation of K1.2 gating by LMAN2 and Slc7a5.

FASEB J

December 2024

Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.

K1.2 is a prominent ion channel in the CNS, where it regulates neuronal excitability. K1.

View Article and Find Full Text PDF
Article Synopsis
  • High grade serous ovarian cancer has two metabolic subtypes: a high OXPHOS subtype that is more chemosensitive and a low OXPHOS subtype that relies on glycolysis and is more drug resistant.
  • The low OXPHOS subtype shows higher levels of lactate dehydrogenase and monocarboxylate transporter 4, indicating different metabolic behaviors compared to the high OXPHOS subtype.
  • Two imaging techniques, C magnetic resonance spectroscopy and PET scans, can differentiate between these subtypes and track their treatment responses, offering potential clinical applications for patient management.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!