A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of scaling base thickness on the performance of heterojunction phototransistors. | LitMetric

Impact of scaling base thickness on the performance of heterojunction phototransistors.

Nanotechnology

Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, United States of America.

Published: March 2017

In this letter we report the effect of vertical scaling on the optical and electrical performance of mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8845 and 9528 A W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2760 at 77 K and 3081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17690 at 77 K, and 19050 at 150 K.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa5849DOI Listing

Publication Analysis

Top Keywords

devices bases
16
scaling base
8
base thickness
8
heterojunction phototransistors
8
optical gain
8
devices
5
impact scaling
4
base
4
performance
4
thickness performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!