Myrmecochory is the process of seed dispersal by ants; however, it is highly challenging to study, mainly because of the small size of both partners and the comparatively large range of dispersal. The mutualistic interaction between ants and seeds involves the former retrieving diaspores, consuming their elaiosome (a nutrient-rich appendage), and the rejection of seeds from the nest. Here, we introduce a semi-automated method based on stitching high resolution images together, allowing the study of myrmecochory in a controlled environment over time. We validate the effectiveness of our method in detecting and discriminating seeds and ants. We show that the number of retrieved diaspores varies highly among colonies, and is independent of both their size and activity level, even though the dynamics of diaspore collection are correlated with the arrival of ants at the food source. We find that all retrieved seeds are rejected from the nest in a clustered pattern, and, surprisingly, they are also frequently redispersed within the arena afterwards, despite lacking elaiosome. This finding suggests that the dispersal pattern might be more complex and dynamic than expected. Our method unveils new insights on the mechanisms of myrmecochory, and could be usefully adapted to study other dispersal phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223120PMC
http://dx.doi.org/10.1038/srep40143DOI Listing

Publication Analysis

Top Keywords

seed dispersal
8
dispersal ants
8
dispersal
5
ants
5
automated method
4
method large-scale
4
large-scale monitoring
4
monitoring seed
4
ants myrmecochory
4
myrmecochory process
4

Similar Publications

The composition of a plant's neighbourhood shapes its competitive interactions. Neighbours may be related individuals due to limited seed dispersal or clonal growth, so that the ability to recognize and respond to the presence of kin is beneficial. Here, we ask whether plants plastically adjust their floral and clonal allocation in response to their neighbour's identity.

View Article and Find Full Text PDF

We present a new hierarchical Bayesian method using multilocus genotypes to estimate recent seed and pollen migration rates in a spatially explicit framework that incorporates distance effects separately for each type of dispersal. The method additionally estimates population allelic frequencies, population divergence values, individual inbreeding coefficients, individual maternal and paternal ancestries, and allelic dropout rates. We conduct a numerical simulation analysis that indicates that the method can provide reliable estimates of seed and pollen migration rates and allow accurate inference of spatial effects on migration, at affordable sample sizes (25-50 individuals/population) when population genetic divergence is not low (FST≥0.

View Article and Find Full Text PDF

Vertical seed dispersal towards higher or lower altitudes is an important process for plants' adaptation to climate change. Although many plants depend on animals for seed dispersal, studies on vertical seed dispersal by animals, determined by complex animal behaviours, are scarce. Previous studies hypothesised that animals inhabiting temperate regions disperse seeds uphill in spring/summer and downhill in autumn/winter due to their seasonal movement following the altitudinal gradients in food phenology.

View Article and Find Full Text PDF

Large-scale reforestation is promoted as an important strategy to mitigate climate change and biodiversity loss. A persistent challenge for efforts to restore ecosystems at scale is how to accelerate ecological processes, particularly natural regeneration. Yet, despite being recognized as an important barrier to the recovery of diverse plant communities in tropical agricultural landscapes, the impacts of dispersal limitation on natural regeneration in secondary forests-and especially how this changes as these forests grow older-are still poorly studied.

View Article and Find Full Text PDF

Monitoring genetic diversity of Torminalis glaberrima for resilient forests in the face of population fragmentation.

Ann Bot

January 2025

Unit of Ecological Genetics, Institute of Forest Biodiversity and Nature Conservation, Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, Vienna, Vienna.

Background And Aims: Torminalis glaberrima (Gand.) Sennikov & Kurtto is a European tree species currently underutilized in forestry, valued for its high-quality wood and contribution to ecosystem stability. Despite a projected range expansion as climate change progresses, current population fragmentation levels may inhibit the species' ability to migrate and stabilize fragile forest ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!