Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has attracted much attention for its potential of transmitting multiple signals simultaneously at the same frequency, which can be used to increase the channel capacity. However, most of the methods for getting multi-mode OAM radio beams are of complicated structure and very high cost. This paper provides an effective solution of generating dual circularly-polarized (CP) dual-mode OAM beams. The antenna consists of four dual-CP elements which are sequentially rotated 90 degrees in the clockwise direction. Different from all previous published research relating to OAM generation by phased arrays, the four elements are fed with the same phase for both left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The dual-mode operation for OAM is achieved through the opposite phase differences generated for LHCP and RHCP, when the dual-CP elements are sequentially rotated in the clockwise direction. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223141PMC
http://dx.doi.org/10.1038/srep40099DOI Listing

Publication Analysis

Top Keywords

oam radio
12
generating dual
8
dual circularly-polarized
8
circularly-polarized dual-mode
8
dual-mode oam
8
radio beams
8
dual-cp elements
8
elements sequentially
8
sequentially rotated
8
clockwise direction
8

Similar Publications

Spin-Orbit-Locking Vectorial Metasurface Holography.

Adv Mater

December 2024

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.

Vectorial metasurface holography, allowing for independent control over the amplitude, phase, and polarization distribution of holographic images enabled by metasurfaces, plays a crucial role in the realm of optical display, optical, and quantum communications. However, previous research on vectorial metasurface holography has typically been restricted to single degree of freedom input and single channel output, thereby demonstrating a very limited modulation capacity. This work presents a novel method to achieve multi-channel vectorial metasurface holography by harnessing spin-orbit-locking vortex beams.

View Article and Find Full Text PDF

Radio-frequency orbital angular momentum (RF-OAM) mode multiplexing has received increasing attention in next-generation (6G) wireless communication as a new spatial multiplexing dimension to further extend data capacity. In particular, the circular antenna array (CAA) based RF-OAM generation using photonic methods is a promising approach due to its flexible reconfigurability, low propagation loss, high operating bandwidth, and high pattern quality. However, most current reports focus either on the bulk optics-based implementations or on band-limited delay line-based approaches.

View Article and Find Full Text PDF

Polarization insensitive non-interleaved frequency multiplexed dual-band Terahertz coding metasurface for independent control of reflected waves.

Sci Rep

September 2024

State Key Laboratory of Radio Frequency Heterogenous Integration, Guangdong Engineering Research Centre of Base Station Antennas, Shenzhen Key Laboratory of Antennas and Propagation, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China.

Independent control of electromagnetic (EM) waves by metasurfaces for multiple tasks are highly desired and is the recent hot topic of research. In this work we contribute a polarization insensitive frequency multiplexed 2-bit coding metasurface to control the Terahertz (THz) waves in the two operating bands independently. In this regard, as a first step a cascaded meta-atom composed of square rings and/or square metallic patches separated by two polyimide substrates is designed and optimized that provides sixteen independent distinct discrete phases in the reflection geometry.

View Article and Find Full Text PDF

This paper presents the generation of orbital angular momentum (OAM) vortex waves with mode +1 using dielectric resonator antenna (DRA) array. The proposed antenna was designed and fabricated using FR-4 substrate to generate OAM mode +1 at 3.56 GHz (5G new radio band).

View Article and Find Full Text PDF

Orbital angular momentum (OAM) has recently attracted extensive attention in the radio frequency domain due to its potential applications in various areas. In the OAM-based communication system, the development of the OAM-generating antennas lies at the heart of the matter to generate and receive vortex beams. In this work, a multiplexing/demultiplexing millimeter-wave OAM antenna based on the traveling-wave circular loop structure is proposed and experimentally demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!