High throughput micropatterning of interspersed cell arrays using capillary assembly.

Biofabrication

Physico-Chimie Curie, Institut Curie, PSL Research University, Centre National de Recherche Scientifique (CNRS), UMR 168, Université Pierre et Marie Curie (UPMC), F-75005, Paris, France. Institut Pierre-Gilles de Gennes, F-75005, Paris, France.

Published: February 2017

A novel technology is reported to immobilize different types of particles or cells on a surface at predefined positions with a micrometric precision. The process uses capillary assembly on arrays of crescent-shaped structures with different orientations. Sequential assemblies in different substrate orientations with different types of particles allow for the creation of imbricated and multiplexed arrays. In this work up to four different types of particles were deterministically localized on a surface. Using this process, antibody coated microparticles were assembled on substrates and used as capture patterns for the creation of complex cell networks. This new technology may have numerous applications in biology, e.g. for fast cell imaging, cell-cell interactions studies, or construction of cell arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/aa5852DOI Listing

Publication Analysis

Top Keywords

types particles
12
cell arrays
8
capillary assembly
8
high throughput
4
throughput micropatterning
4
micropatterning interspersed
4
cell
4
interspersed cell
4
arrays
4
arrays capillary
4

Similar Publications

Sedimentation and structure of squirmer suspensions under gravity.

Soft Matter

January 2025

Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.

The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.

View Article and Find Full Text PDF

Mucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.

View Article and Find Full Text PDF

Pf bacteriophages, lysogenic viruses that infect are implicated in the pathogenesis of chronic infections; phage-infected (Pf+) strains are known to predominate in people with cystic fibrosis (pwCF) who are older and have more severe disease. However, the transmission patterns of Pf underlying the progressive dominance of Pf+ strains are unclear. In particular, it is unknown whether phage transmission commonly occurs horizontally between bacteria within the airway via viral particles or if Pf+ bacteria are mostly acquired via new infections.

View Article and Find Full Text PDF

Microplastics (MP) contamination in food and water poses significant health risks. While microbes that form biofilm show potential for removing MP from the environment, no methods currently exist to eliminate these non-degradable MP from the human body. In this study, we propose using probiotics to adsorb and remove ingested MP within the gut.

View Article and Find Full Text PDF

elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China.

Heliyon

January 2025

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.

Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species (), native species and in a typical urban plateau Lake wetland, Caohai lake, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!