A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stimulus-Responsive Short Peptide Nanogels for Controlled Intracellular Drug Release and for Overcoming Tumor Resistance. | LitMetric

Stimulus-Responsive Short Peptide Nanogels for Controlled Intracellular Drug Release and for Overcoming Tumor Resistance.

Chem Asian J

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.

Published: April 2017

Multidrug resistance (MDR) poses a major burden to cancer treatment. As one important factor contributing to MDR, overexpression of P-glycoprotein (P-gp) results in a reduced intracellular drug accumulation. Hence, the ability to effectively block the efflux protein and to accumulate the therapeutics in cancer cells is of great significance in clinical practice. In this work, we successfully developed a smart stimulus-responsive short peptide-assembled system, termed as PD/VER nanogels, which synergistically combined the acid-activatable antitumor prodrug doxorubicin (Dox) with the P-gp inhibitor verapamil (VER) for reversing MDR. Systematic studies demonstrated that such an inhibitor-encapsulated nanogel could effectively enhance the accumulation of Dox in resistant cancer cells, thereby revealing significantly higher antitumor activity compared to free Dox molecules. This work showed that the assembly of bioactive agents with a synergistic effect into nano-drugs could provide a useful strategy to overcome cancer drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201601704DOI Listing

Publication Analysis

Top Keywords

stimulus-responsive short
8
intracellular drug
8
cancer cells
8
short peptide
4
peptide nanogels
4
nanogels controlled
4
controlled intracellular
4
drug release
4
release overcoming
4
overcoming tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!