Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process.

Appl Microbiol Biotechnol

Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.

Published: April 2017

A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-016-8084-5DOI Listing

Publication Analysis

Top Keywords

water kefir
40
kefir grain
20
grain growth
16
low water
12
fermentation process
12
production process
12
water
10
kefir
10
growth industrial
8
industrial water
8

Similar Publications

Article Synopsis
  • The study compared sugar-free (A) and sugar-added (B) carob sherbet fermented with water kefir grains, noting significant changes in pH, TSS, and titratable acidity after 48 hours of fermentation.
  • After fermentation, sugar-free A maintained higher levels of beneficial compounds like gallic acid and displayed a lower decrease in antioxidant activity (DPPH) compared to sugar-added B, although both saw declines over time.
  • Moreover, A showed better mineral retention after 14 days, while B exhibited higher microbial counts throughout fermentation and storage.
View Article and Find Full Text PDF

In recent years, there has been a growing interest in developing a distinguished alternative to human consumption of animal-based proteins. The application of lentil proteins in the food industry is typically limited due to their poor solubility and digestibility. An innovative method of balancing lentil-whey protein (LP-WP) complexes with higher-quality protein properties was established to address this issue, which coupled a pH-shifting approach with fermentation treatment.

View Article and Find Full Text PDF

A comparative approach on the prophylactic impact of fermented beverages on acute ulcerative colitis in mouse model.

Pol J Vet Sci

December 2024

Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, 15030, İstiklal Campus, Burdur, Turkey.

Acute ulcerative colitis is an inflammatory disease of the colon that is becoming increasingly prevalent. Yet, a growing body of evidence supports the efficacy of dietary interventions in preventing acute ulcerative colitis. Fermented beverages have been the focus of research in humans and animals for several years due to their potential to influence overall health functions with an emphasis on gut health.

View Article and Find Full Text PDF

Comparative Study of Water and Milk Kefir Grains as Biopolymeric Adsorbents for Copper(II) and Arsenic(V) Removal from Aqueous Solutions.

Polymers (Basel)

November 2024

Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.

This study investigates the biosorption capabilities of kefir grains, a polysaccharide-based byproduct of the fermentation process, for removing copper(II) and arsenic(V) from contaminated water. Unlike traditional heavy-metal removal methods, which are typically expensive and involve environmentally harmful chemicals, biopolymeric materials such as kefir grains provide a sustainable and cost-effective alternative for adsorbing hazardous inorganic pollutants from aqueous solutions. Our experimental results revealed significant differences in the sorption capacities of two types of kefir grains.

View Article and Find Full Text PDF

Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!