Uranium(IV) adsorption by natural organic matter in anoxic sediments.

Proc Natl Acad Sci U S A

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.

Published: January 2017

Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yet been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278482PMC
http://dx.doi.org/10.1073/pnas.1611918114DOI Listing

Publication Analysis

Top Keywords

anoxic sediments
12
uiv speciation
12
organic matter
8
mineral formation
8
field-relevant conditions
8
adsorption organic
8
uiv
7
speciation
5
uraniumiv adsorption
4
adsorption natural
4

Similar Publications

Suspended sediment (SPS) triggers nitrogen retention by altering microbial network stability and electron transport behavior during the aerobic-anoxic transition.

J Environ Manage

December 2024

Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:

NO-N transformation, the vital biological process, determines nitrogen removal and retention in aquatic environment. Suspended sediment (SPS) ubiquitous in freshwater ecosystems can accelerate the transitions from aerobic to anoxic states, inevitably impacting NO-N transformation. To elaborate on the microbial mechanism by which SPS content affected NO-N transformation, we explored nitrogen removal and retention, microbial communities, co-occurrence networks, and electron transfer behavior under different SPS content during the aerobic-anoxic transition.

View Article and Find Full Text PDF

Unlabelled: Cable bacteria, filamentous sulfide oxidizers that live in sulfidic sediments, are at times associated with large flocks of swimming bacteria. It has been proposed that these flocks of bacteria transport electrons extracellularly to cable bacteria via an electron shuttle intermediate, but the identity and activity of these bacteria in freshwater sediment remain mostly uninvestigated. Here, we elucidate the electron exchange capabilities of the bacterial community by coupling metagenomics and metatranscriptomics to 16S rRNA amplicon-based correlations with cable bacteria over 155 days.

View Article and Find Full Text PDF

Immobilization of phosphorus (P) migrated from sediment increasing algal-available P pool in P-inactivating material.

Chemosphere

December 2024

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

Use of phosphorus (P)-inactivating material to immobilize P released from sediment, typically under anoxic condition, is a method often considered to reduce lake internal P loading for eutrophication control. This study found that immobilizing the released P from sediment induced accumulation of algal-available P (NaHCO and Fe oxide paper strip extractable P) in P-inactivating material which was even higher than those in raw sediment at initial stage (by 29.7% and 85.

View Article and Find Full Text PDF

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic, and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.

View Article and Find Full Text PDF

Global chromium (Cr), tungsten (W), and vanadium (V) cycles are emerging concerns due to their toxicities to ecosystems. However, a comprehensive understanding of their geochemical reactions and controls at the sediment-water interface remains largely unknown. This knowledge gap hinders the assessment of their potential remobilization in Earth's surface environments threatened by hypoxic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!