Bimodal dynamics of granular organelles in primary renin-expressing cells revealed using TIRF microscopy.

Am J Physiol Renal Physiol

BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.

Published: January 2017

Renin is the initiator and rate-limiting factor in the renin-angiotensin blood pressure regulation system. Although renin is not exclusively produced in the kidney, in nonmurine species the synthesis and secretion of the active circulatory enzyme is confined almost exclusively to the dense core granules of juxtaglomerular (JG) cells, where prorenin is processed and stored for release via a regulated pathway. Despite its importance, the structural organization and regulation of granules within these cells is not well understood, in part due to the difficulty in culturing primary JG cells in vitro and the lack of appropriate cell lines. We have streamlined the isolation and culture of primary renin-expressing cells suitable for high-speed, high-resolution live imaging using a Percoll gradient-based procedure to purify cells from RenGFP transgenic mice. Fibronectin-coated glass coverslips proved optimal for the adhesion of renin-expressing cells and facilitated live cell imaging at the plasma membrane of primary renin cells using total internal reflection fluorescence microscopy (TIRFM). To obtain quantitative data on intracellular function, we stained mixed granule and lysosome populations with Lysotracker Red and stimulated cells using 100 nM isoproterenol. Analysis of membrane-proximal acidic granular organelle dynamics and behavior within renin-expressing cells revealed the existence of two populations of granular organelles with distinct functional responses following isoproterenol stimulation. The application of high-resolution techniques for imaging JG and other specialized kidney cells provides new opportunities for investigating renal cell biology.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00384.2016DOI Listing

Publication Analysis

Top Keywords

renin-expressing cells
16
cells
11
granular organelles
8
primary renin-expressing
8
cells revealed
8
bimodal dynamics
4
dynamics granular
4
primary
4
organelles primary
4
renin-expressing
4

Similar Publications

APOL1 Modulates Renin-Angiotensin System.

Biomolecules

December 2024

Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA.

Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin-angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels).

View Article and Find Full Text PDF

Definitive Evidence for the Identification and Function of Renin-Expressing Cholinergic Neurons in the Nucleus Ambiguus.

Hypertension

February 2025

Department of Physiology (E.M.F., J.G., M.G., K.K., P.C.M., A.H.G., I.V., M.X., A.G., D.G., N.M.M., K.-T.L., K.K.W., D.T.B., G.C.M., M.R.H., J.L.S., J.L.G., C.D.S., P.N.), Medical College of Wisconsin, Milwaukee.

Background: The importance of the brain renin-angiotensin system in cardiovascular function is well accepted. However, not knowing the precise source of renin in the brain has been a limitation toward a complete understanding of how the brain renin-angiotensin system operates.

Methods: Highly sensitive in situ hybridization techniques and conditional knockout mice were used to address the location and function of renin in the brainstem.

View Article and Find Full Text PDF

Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Forkhead box D1-positive (Foxd1) stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.

View Article and Find Full Text PDF
Article Synopsis
  • Renin-expressing juxtaglomerular (JG) cells have a mechanism that senses pressure and regulates renin release based on changes in blood flow.
  • The study investigates whether Piezo2 receptors, known for their role in detecting touch, play a role in controlling renin synthesis and release in JG cells.
  • Results show that Piezo2 channels are not necessary for renin release or synthesis in JG cells under normal or stressed conditions, suggesting that other mechanisms need to be identified.
View Article and Find Full Text PDF

Inhibition of Renin Expression Is Regulated by an Epigenetic Switch From an Active to a Poised State.

Hypertension

September 2024

Department of Pediatrics, Child Health Research Center (J.P.S., R.P., S.M., M.L.S.S.-L., R.A.G.), University of Virginia, Charlottesville, VA.

Background: Renin-expressing cells are myoendocrine cells crucial for the maintenance of homeostasis. Renin is regulated by cAMP, p300 (histone acetyltransferase p300)/CBP (CREB-binding protein), and Brd4 (bromodomain-containing protein 4) proteins and associated pathways. However, the specific regulatory changes that occur following inhibition of these pathways are not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!