Acute inflammation is a protective response of the body to harmful stimuli, such as pathogens or damaged cells. However, dysregulated inflammation can cause secondary damage and could thus contribute to the pathophysiology of many diseases. Inflammasomes, the macromolecular complexes responsible for caspase-1 activation, have emerged as key regulators of immune and inflammatory responses. Therefore, modulation of inflammasome activity has become an important therapeutic approach. Here we describe the design of a smart nanodevice that takes advantage of the passive targeting of nanoparticles to macrophages and enhances the therapeutic effect of caspase-1 inhibitor VX-765 in vivo. The functional hybrid systems consisted of MCM-41-based nanoparticles loaded with anti-inflammatory drug VX-765 (S2-P) and capped with poly-L-lysine, which acts as a molecular gate. S2-P activity has been evaluated in cellular and in vivo models of inflammation. The results indicated the potential advantage of using nanodevices to treat inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2017.01.002DOI Listing

Publication Analysis

Top Keywords

targeting inflammasome
4
inflammasome inhibition
4
inhibition caspase-1
4
caspase-1 activity
4
activity capped
4
capped mesoporous
4
mesoporous silica
4
silica nanoparticles
4
nanoparticles acute
4
acute inflammation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!