Recent findings indicate that microRNAs (miRNAs) are critical for the regulatory network of adipogenesis in human mesenchymal stem/stromal cells (MSCs). Fetal MSCs derived from amniotic fluid (AF-MSCs) represent a population of multipotent stem cells characterized by a wide range of differentiation properties that can be applied in cell-based therapies. In this study, miRNA microarray analysis was performed to assess miRNA expression in terminal differentiated AF-MSCs into adipocyte-like cells (AL cells). MiR-26a was identified in high expression levels in AL cells indicating a critical role in the process of adipogenesis. Overexpression of miR-26a in AF-MSCs led to significant induction of their adipogenic differentiation properties that were altered after miR-26a inhibition. We have demonstrated that miR-26a regulates adipogenesis through direct inhibition of PTEN, which in turn promotes activation of Akt pathway. Also, miR-26a modulates cell cycle during adipogenesis by interacting with Cyclin E1 and CDK6. These results point to the regulatory role of miR-26a and its target genes PTEN, Cyclin E1, and CDK6 in adipogenic differentiation of AF-MSCs, providing a basis for understanding the mechanisms of fat cell development and obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2016.0203 | DOI Listing |
Zool Res
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.
Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.
View Article and Find Full Text PDFNat Commun
January 2025
Oncology Research & Development, Pfizer Inc., San Diego, CA, USA.
To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of ESR1 and RB1 alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent.
View Article and Find Full Text PDFBiol Direct
January 2025
Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning, China.
Background: Bladder cancer (BC) is a malignant tumor. Methyltransferase-like 7B (MEETL7B) is a methyltransferase and its role in BC has not yet been revealed.
Method: Stable METTL7B knockdown or overexpression were achieved by lentiviral transduction in SW780 and TCCSUP cell lines.
Adv Exp Med Biol
January 2025
Translational Research Unit, Hospital of Prato, AUSL Toscana Centro, Prato, Italy.
The cyclin-dependent kinases 4 and 6 inhibitors are the mainstay of treatment for patients with hormone receptor-positive and HER2-negative breast cancer. The ability of these drugs to improve the outcome of patients both in the metastatic and the early setting has been largely demonstrated. However, resistance, either de novo or acquired, represents a major clinical challenge.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!