Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling) has not yet been clarified. We developed an animal model of right ventricular (RV) hypertrophy with fibrosis by pulmonary artery (PA) banding in rats. Two, four, and six weeks after the PA-banding operation, the tension and intracellular Ca2+ concentration of RV papillary muscles were simultaneously measured (n = 33). The PA-banding rats were clearly divided into two groups by the presence or absence of apparent interstitial fibrosis in the papillary muscles: F+ or F- group, respectively. The papillary muscle diameter and size of myocytes were almost identical between F+ and F-, although the RV free wall weight was heavier in F+ than in F-. F+ papillary muscles exhibited higher stiffness, lower active tension, and lower Ca2+ responsiveness compared with Sham and F- papillary muscles. In addition, we found that the time to peak Ca2+ had the highest correlation coefficient to percent of fibrosis among other parameters, such as RV weight and active tension of papillary muscles. The phosphorylation level of troponin I in F+ was significantly higher than that in Sham and F-, which supports the idea of lower Ca2+ responsiveness in F+. We also found that connexin 43 in F+ was sparse and disorganized in the intercalated disk area where interstitial fibrosis strongly developed. In the present study, the RV papillary muscles obtained from the PA-banding rats enabled us to directly investigate the relationship between fibrosis and cardiac dysfunction, the impairment of E-C coupling in particular. Our results suggest that interstitial fibrosis worsens cardiac function due to 1) the decrease in Ca2+ responsiveness and 2) the asynchronous activation of each cardiac myocyte in the fibrotic preparation due to sparse cell-to-cell communication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222608PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169564PLOS

Publication Analysis

Top Keywords

papillary muscles
24
interstitial fibrosis
16
ca2+ responsiveness
12
fibrosis
9
excitation-contraction coupling
8
pulmonary artery
8
artery banding
8
fibrosis cardiac
8
cardiac function
8
e-c coupling
8

Similar Publications

Preclinical Experience Using 4D Intracardiac Echocardiography to Guide Cardiac Electrophysiology Procedures.

J Cardiovasc Electrophysiol

December 2024

Division of Cardiovascular Medicine, Cardiac Electrophysiology Section, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Introduction: Intracardiac echocardiography (ICE) is an essential imaging modality for electrophysiology procedures, allowing intraprocedural monitoring, real-time catheter manipulation guidance, and visualization of complex anatomic structures. Four-dimentional (4D) ICE is the next stage in the evolution of the technology, permitting 360° rotation of the imaging plane, simultaneous multiplanar imaging, and volumetric acquisition, similar to transesophageal echocardiography (TEE). In this study, we report our experience with a novel 4D ICE catheter (NuVision, Biosense Webster) in structural electrophysiology procedures and difficult ventricular ablations in a swine preclinical model.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac resynchronization therapy (CRT) improves functional mitral regurgitation (FMR) by coordinating heart muscle segments, especially between papillary muscles, beyond just boosting left ventricular (LV) performance.
  • Eighteen patients with dilated cardiomyopathy underwent tests to measure heart function, and biventricular pacing showed a significant reduction in mitral regurgitation despite some patients showing no change in LV pressure.
  • The study concludes that CRT effectively lowers FMR independently of LV systolic function improvements, highlighting the importance of understanding its mechanisms for better treatment outcomes.
View Article and Find Full Text PDF

The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC value for firing rate was 56.

View Article and Find Full Text PDF

Background: Arrhythmias originating from papillary muscles (PAPs) can be challenging when targeted with catheter ablation. The prevalence and impact of structural abnormalities on PAPs in patients with focal PAP arrhythmias is unknown.

Objectives: The purpose of this study was to analyze, in a consecutive patient series with focal PAP arrhythmias, the impact of structural abnormalities detected by multimodality imaging.

View Article and Find Full Text PDF

A 27-year-old man diagnosed with right ventricular metastasis of Ewing sarcoma was referred to our institution. We surgically resected the metastatic tumor to prevent sudden death and reconstructed the right ventricle and tricuspid valve. He has survived for 1 year postoperatively without recurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!