Water-level fluctuations due to reservoir management could substantially affect the timing and magnitude of reservoir methane (CH) fluxes to the atmosphere. However, effects of such fluctuations on CH emissions have received limited attention. Here we examine CH emission dynamics in six Pacific Northwest U.S. reservoirs of varying trophic status, morphometry, and management regimes. In these systems, we show that water-level drawdowns can, at least temporarily, greatly increase per-area reservoir CH fluxes to the atmosphere, and can account for more than 90% of annual reservoir CH flux in a period of just a few weeks. Reservoirs with higher epilimnetic [chlorophyll a] experienced larger increases in CH emission in response to drawdown (R = 0.84, p < 0.01), suggesting that eutrophication magnifies the effect of drawdown on CH emission. We show that drawdowns as small as 0.5 m can stimulate ebullition events. Given that drawdown events of this magnitude are quite common in reservoirs, our results suggest that this process must be considered in sampling strategies designed to characterize total CH fluxes from reservoirs. The extent to which (and the mechanisms by which) drawdowns short-circuit connections between methanogenesis and methanotrophy, thereby increasing net CH fluxes to the atmosphere, should be a focus of future work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b03185 | DOI Listing |
Sci Rep
January 2025
Institut de Recherche en Astrophysique et Planétologie, UPS/CNRS/CNES, F-31400, Toulouse, France.
The radioactive gas radon-222, a fluid and aerosol tracer in Earth's lithosphere and atmosphere, can also reveal subtle rock physics processes in extraterrestrial environments, such as those involving water, but remains poorly constrained in planetary bodies due to the limited number of samples available. Here we measure the effective radium-226 concentration (EC) of six Martian and nine lunar meteorites to derive radon source terms for Martian and lunar rocks. EC values are 0.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Ponte Bucci street, cube 15B, 87036 Rende, Italy.
The work aims to estimate natural greenhouse gas emissions from soils in the Sibari Coastal Plain (Southern Italy), to understand (i) the contribution in terms of the total amount of CO and CH emitted in non-volcanic areas, (ii) the relationship among emitted gas, land use, organic matter and tectonic structures, and (iii) their potential environmental implications. Data were elaborated with statistical and geostatistical methods to separate the different populations and obtain prediction and probability maps. Methane fluxes had values consistently below the detection limit (0.
View Article and Find Full Text PDFSci Total Environ
January 2025
CNR-Institute of Atmospheric Pollution Research, Rende Division, UNICAL Polifuzionale, Rende 87036, CS, Italy.
This study provides a review of 13 oceanographic campaigns between 2000 and 2017 to measure Hg in the Mediterranean, highlighting major findings from measurement and modelling activities during the Med-Oceanor program. The initial campaigns showed that high concentrations of RGM could be found far from industrial source regions and the observed daily variation in concentration, with peaks at midday and lower concentrations during darkness gave the first indications that photochemically mediated oxidation reactions were producing RGM in the MBL. Later atmospheric chemistry modelling studies showed the feasibility of Hg oxidation by bromine containing oxidants, which are released as a result of the acidification of sea salt aerosols in the Marine Boundary Layer (MBL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!