A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of membrane stabilizing activity from honey. An in-vitro approach. | LitMetric

Assessment of membrane stabilizing activity from honey. An in-vitro approach.

Acta Sci Pol Technol Aliment

Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Karnataka, India.

Published: February 2017

Background: esent study was conducted to evaluate Manoflora (MF), Polyflora (PF), Polyflora forest (PFf), and Processed (Pro) honey varieties to compare the in-vitro anti-inflammatory effects of aqueous honey samples in dose dependent manner. In-vitro anti-inflammatory activity was evaluated using membrane stabilization assay of RBCs at different aqueous honey concentrations. Material and method. The present investigation carried out for selected varieties of honey against erythrocytes exposed to both heat and hypotonic lyses and inhibition of membrane damage was compared to the standard drug acetylsalicylic acid. Results. Membrane damage was inhibited in both the model hemolysis of erythrocytes in vitro in a concentration dependent manner. Hypotonic solution inducing damage was inhibited by aqueous honey sample in ascending order ranged from 8.25% to 97.76% at 10 to 50 mg/ml and standard drug acetylsalicylic acid showing hemolysis protection 96.09% at 100 μg/ml concentration. In heat induced hemolysis model aqueous honey sample exhibited its protecting property during external stress condition in all samples ranged from 0.44% to 21.23% at 10 to 50 mg/ml and acetylsalicylic acid showed 39.38% at 100 μg/ml concentration. Among the variety PFf showed highest protecting nature for hypotonic solution induced lyses (97.76%) and heat induced hemolysis (21.23%) at 50 mg/ml respectively. Conclusion. With these investigations data conclude that the model exhibits marked anti-inflammatory effect. Future research is to be carried out to identify the molecules responsible in honey and its mechanism.

Methods: present study was conducted to evaluate Manoflora (MF), Polyflora (PF), Polyflora forest (PFf), and Processed (Pro) honey varieties to compare the in-vitro anti-inflammatory effects of aqueous honey samples in dose dependent manner. In-vitro anti-inflammatory activity was evaluated using membrane stabilization assay of RBCs at different aqueous honey concentrations. Material and method. The present investigation carried out for selected varieties of honey against erythrocytes exposed to both heat and hypotonic lyses and inhibition of membrane damage was compared to the standard drug acetylsalicylic acid.

Results: Membrane damage was inhibited in both the model hemolysis of erythrocytes in vitro in a concentration dependent manner. Hypotonic solution inducing damage was inhibited by aqueous honey sample in ascending order ranged from 8.25% to 97.76% at 10 to 50 mg/ml and standard drug acetylsalicylic acid showing hemolysis protection 96.09% at 100 μg/ml concentration. In heat induced hemolysis model aqueous honey sample exhibited its protecting property during external stress condition in all samples ranged from 0.44% to 21.23% at 10 to 50 mg/ml and acetylsalicylic acid showed 39.38% at 100 μg/ml concentration. Among the variety PFf showed highest protecting nature for hypotonic solution induced lyses (97.76%) and heat induced hemolysis (21.23%) at 50 mg/ml respectively.

Conclusions: With these investigations data conclude that the model exhibits marked anti-inflammatory effect. Future research is to be carried out to identify the molecules responsible in honey and its mechanism involved.

Download full-text PDF

Source
http://dx.doi.org/10.17306/J.AFS.2015.1.10DOI Listing

Publication Analysis

Top Keywords

aqueous honey
32
acetylsalicylic acid
20
in-vitro anti-inflammatory
16
dependent manner
16
membrane damage
16
standard drug
16
drug acetylsalicylic
16
damage inhibited
16
hypotonic solution
16
honey sample
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!