Electrochemical pseudocapacitors are an attractive choice for energy storage applications because they offer higher energy densities than electrostatic or electric double layer capacitors. They also offer higher power densities in shorter durations of time, as compared to batteries. Recent efforts on pseudocapacitors include biocompatible hydrogel electrolytes and transition metal electrodes for implantable energy storage applications. Pseudocapacitive behavior in these devices has been attributed to the redox reactions that occur within the electric double layer, which is formed at the electrode-electrolyte interface. In the present study, we describe a detailed investigation on redox reactions responsible for pseudocapacitive behavior in glycoside-containing hydrogel formulations. Pseudocapacitive behavior was compared among various combinations of biocompatible hydrogel electrolytes, using carbon tape electrodes and transition metal electrodes based on fluorine-doped tin oxide. The hydrogels demonstrated a pseudocapacitive response only in the presence of transition metal electrodes but not in the presence of carbon electrodes. Hydrogels containing amine moieties showed greater energy storage than gels based purely on hydroxyl functional groups. Furthermore, energy storage increased with greater amine content in these hydrogels. We claim that the redox reactions in hydrogels are largely based on Lewis acid-base interactions, facilitated by amine and hydroxyl side groups along the electrolyte chain backbones, as well as hydroxylation of electrode surfaces. Water plays an important role in these reactions, not only in terms of providing ionic radicals but also in assisting ion transport. This understanding of redox reactions will help determine the choice of transition metal electrodes, Lewis acid-base pairs in electrolytes, and medium for ionic transport in future biocompatible pseudocapacitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b11113 | DOI Listing |
Sci Rep
January 2025
School of Technology, Beijing Forestry University, Beijing, 100083, China.
The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Applied Physics and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.
Sodium metal batteries without pre-deposited Na (anode-free) and with a limited amount of Na metal (anode-less) have attracted increasing attention due to their competitive energy density and the high abundance of sodium. However, severe interfacial issues result in poor cycling stability and low Coulombic efficiency. Here, the lightweight interphase layers composed of intermetallic nanoparticles (Sn-Cu and Sn-Ni) are applied to improve Na plating/stripping behaviors.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Huazhong University of Science and Technology Wuhan National High Magnetic Field Center, No.1037, Luoyu Road, Wuhan, Hubei, 430074, CHINA.
Objective: Pulse parameter controllable transcranial magnetic stimulation (cTMS) devices with fully-controlled semiconductor switches are increasingly being developed, but the primary waveform they generate is often accompanied by ringing, which is due to the resonance between the stimulation coil inductance and the snubber capacitors paired with the switches at the end of the pulse. This study provides a ringing suppression design method to effectively suppress it and reduce its impact on stimulation efficacy.
Methods: A three-pronged design method is developed to suppress the ringing at its source.
J Environ Manage
January 2025
Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India.
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!