WS is a transition metal dichalcogenide (TMD) with many potential applications from catalysis to sensing, and is of interest both in its bulk and monolayer forms. There is discrepancy in the literature on the reported electrocatalytic effect of layered WS. In this study, we examine two issues: the influence of the WS source and the effect of a common agitation technique via ultrasonication on the observed electrocatalysis. Bulk WS from five different chemical providers demonstrated different HER electrocatalytic performances. Changes to the duration of sonication result in different HER electrocatalytic performances across all WS materials. This may affect the efficiency of subsequent modifications from which these TMD materials serve as precursor materials. On the other hand, while WS materials from different suppliers showed varying HET performances, changes in sonication time have no significant effect on their HET performances. Both the WS source and the duration of sonication have different implications for the electrochemical performance of bulk WS and thus represent important variables to consider in research involving WS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp07385a | DOI Listing |
Oper Neurosurg (Hagerstown)
November 2024
Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Background And Objective: Transcranial magnetic resonance-guided focused ultrasound (MRgFUS) has revolutionized ablative treatment of essential tremor in recent years. However, limitations in precision targeting may account for suboptimal efficacy and significant side effects. We describe a simple intraprocedural three-dimensional image-guided lesion shaping technique that can improve overall outcomes of MRgFUS for essential tremor and facilitate expansion to novel indications.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.
Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of General Medicine, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai -600116, Tamil Nadu, India.
Aim: This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.
Background: Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.
Assay Drug Dev Technol
January 2025
Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education & Research - Autonomous, Anantapur, Andhra Pradesh, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!