The effect of arginine on the Wnt/β-catenin signaling pathway during porcine intramuscular preadipocyte differentiation.

Food Funct

Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.

Published: January 2017

Dietary l-arginine supplementation decreases backfat thickness and increases intramuscular fat content in growing-finishing pigs, but the underlying mechanisms are unknown. In this study, the effect of arginine on differentiation of porcine intramuscular preadipocytes was investigated in vitro. We showed that the mRNA and protein expressions of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α were upregulated by arginine supplementation. Furthermore, the intracellular triglyceride level was increased by arginine supplementation. We also showed that activation of the Wnt/β-catenin signal pathway by using lithium chloride (LiCl) significantly attenuated arginine-induced upregulation of PPARγ and increased the phospho-β-catenin level. These findings suggested that arginine promotes porcine intramuscular preadipocyte differentiation, which might be via repressing the Wnt/β-catenin signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fo01452fDOI Listing

Publication Analysis

Top Keywords

porcine intramuscular
12
wnt/β-catenin signaling
8
signaling pathway
8
intramuscular preadipocyte
8
preadipocyte differentiation
8
arginine supplementation
8
arginine
5
arginine wnt/β-catenin
4
pathway porcine
4
intramuscular
4

Similar Publications

A Pool of Bacterium-like Particles Displaying African Swine Fever Virus Antigens Induces Both Humoral and Cellular Immune Responses in Pigs.

Vaccines (Basel)

December 2024

State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Background/objectives: African swine fever (ASF), caused by African swine fever virus (ASFV), poses a significant threat to the global swine industry. This underscores the urgent need for safe and effective ASF vaccines.

Methods: Here, we constructed five bacterium-like particles (BLPs) that each display one of the five ASFV antigens (F317L, H171R, D117L, B602L, and p54) based on the Gram-positive enhancer matrix-protein anchor (GEM-PA) system.

View Article and Find Full Text PDF

Introduction: Animal influenza viruses pose a danger to the general public. Eurasian avian-like H1N1 (EA H1N1) viruses have recently infected humans in several different countries and are often found in pigs in China, indicating that they have the potential to cause a pandemic. Therefore, there is an urgent need to develop a potent vaccine against EA H1N1.

View Article and Find Full Text PDF

Feeding citrus pomace fermented with combined probiotics improves growth performance, meat quality, fatty acid profile, and antioxidant capacity in yellow-feathered broilers.

Front Vet Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Introduction: The reasonable and efficient utilization of agricultural by-products as animal feed has the capacity to not only mitigate the scarcity of conventional feedstuff but also alleviate the environmental load. This study was aimed to investigate the effects of feeding citrus pomace (CP) fermented with combined probiotics on growth performance, carcass traits, meat quality and antioxidant capacity in yellow-feathered broilers.

Methods: A cohort of 540 female yellow-feathered broilers (Qingyuan partridge chicken, 90-day-old) were randomly divided into three groups and, respectively, fed the basal diet (Control), diet containing 10% unfermented CP (UFCP) and diet containing 10% fermented CP (FCP).

View Article and Find Full Text PDF

Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.

View Article and Find Full Text PDF

Effects of Dietary Gallic Acid on Growth Performance, Meat Quality, Antioxidant Capacity, and Muscle Fiber Type-Related Gene Expression in Broiler Chickens Challenged with Lipopolysaccharide.

Animals (Basel)

December 2024

Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.

In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!