Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories.

Nat Commun

Department of Neurological Surgery and The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, 35 Medical Center Way, Room RMB-1036, Campus Box 0525, San Francisco, California 94143, USA.

Published: January 2017

Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 epithelia originate from the anterior floor plate. E2 and E3 cells complete their differentiation 2-3 weeks after birth, suggesting a link to postnatal maturation. These data reveal discrete bands of E2 and E3 cells that may relay information from the CSF to underlying neural circuits along the ventral midline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477523PMC
http://dx.doi.org/10.1038/ncomms13759DOI Listing

Publication Analysis

Top Keywords

ependymal cells
8
third fourth
8
fourth ventricle
8
cells
5
bi- uniciliated
4
uniciliated ependymal
4
cells define
4
define continuous
4
continuous floor-plate-derived
4
floor-plate-derived tanycytic
4

Similar Publications

Addressing the Effect of Exercise on Glial Cells: Focus on Ependymal Cells.

J Integr Neurosci

December 2024

Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, 95123 Catania, Italy.

A growing body of research highlights the positive impact of regular physical activity on improving physical and mental health. On the other hand, physical inactivity is one of the leading risk factors for noncommunicable diseases and death worldwide. Exercise profoundly impacts various body districts, including the central nervous system.

View Article and Find Full Text PDF

Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation.

Dev Cell

December 2024

Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France. Electronic address:

Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors.

View Article and Find Full Text PDF

Research on SARS-CoV-2, the viral pathogen that causes COVID-19, has identified angiotensin converting enzyme 2 (ACE2) as the primary viral receptor. Several genes that encode viral cofactors, such as TMPRSS2, NRP1, CTSL, and possibly KIM1, have since been discovered. Glutamyl aminopeptidase (APA), encoded by the gene ENPEP, is another cofactor candidate due to similarities in its biological role and high correlation with ACE2 and other human coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4).

View Article and Find Full Text PDF

Reduced serum level of insulin-like growth factor 1 (IGF-1), a major regulator of perinatal development, in extremely preterm infants has been shown to be associated with neurodevelopmental impairment. To clarify the mechanism of IGF-1 transport at the blood-cerebrospinal fluid (CSF) barrier of the immature brain, we combined studies of in vivo preterm piglet and rabbit models with an in vitro transwell cell culture model of neonatal primary murine choroid plexus epithelial (ChPE) cells. We identified IGF-1-positive intracellular vesicles in ChPE cells and provided data indicating a directional transport of IGF-1 from the basolateral to the apical media in extracellular vesicles (EVs).

View Article and Find Full Text PDF

Myelinated Glial Cells: Their Proposed Role in Waste Clearance and Neurodegeneration in Arachnid and Human Brain.

J Comp Neurol

November 2024

Department of Pathology and Laboratory Medicine, Robert Larner, MD College of Medicine at the University of Vermont, University of Vermont Medical Center, Burlington, Vermont, USA.

One of the most important goals in biomedical sciences is understanding the causal mechanisms of neurodegeneration. A prevalent hypothesis relates to impaired waste clearance mechanisms from the brain due to reported waste aggregation in the brains of Alzheimer patients, including amyloid-β plaques and neurofibrillary tau tangles. Currently, our understanding of the mechanisms by which waste is removed from the brain is only fragmentary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!