Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8 T cells. Mysm1 ablation resulted in a twofold reduction in CD8 T-cell numbers, and also led to a hyperactivated CD8 T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8 T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8 T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8 T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8 T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382346PMC
http://dx.doi.org/10.1111/imm.12710DOI Listing

Publication Analysis

Top Keywords

cd8 cells
20
histone h2a
12
cd8 t-cell
12
role histone
8
h2a deubiquitinase
8
mysm1
8
deubiquitinase mysm1
8
cd8
8
mysm1 t-cell
8
mysm1 ablation
8

Similar Publications

Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8 T cell fates in cancer, drawing on insights from acute and chronic viral infection models.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is a disordered pulmonary disease characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen and diffuse alveolar infiltrates. Despite increased research into ALI, current clinical treatments lack effectiveness. Tetramethylpyrazine (TMP) has shown potential in ALI treatment, and understanding its effects on the pulmonary microenvironment and its underlying mechanisms is imperative.

View Article and Find Full Text PDF

While biomarkers have been shown to enhance the prognosis of patients with colorectal cancer (CRC) compared to conventional treatments, there is a pressing need to discover novel biomarkers that can assist in assessing the prognostic impact of immunotherapy and in formulating individualized treatment plans. The RUNX family, consisting of RUNX1, RUNX2, and RUNX3, has been recognized as crucial regulators in developmental processes, with dysregulation of these genes also being implicated in tumorigenesis and cancer progression. In our present study, we demonstrated a crucial regulatory role of RUNX in CD8T and CD103CD8T cell-mediated anti-tumor response within the tumor microenvironment (TME) of human CRC.

View Article and Find Full Text PDF

MERS is a respiratory disease caused by MERS-CoV. Multiple outbreaks have been reported, and the virus co-circulates with SARS-CoV-2. The long-term (> 6 years) cellular and humoral immune responses to MERS-CoV and their potential cross-reactivity to SARS-CoV-2 and its variants are unknown.

View Article and Find Full Text PDF

IL-2/IL-2R inhibition improved the prognosis of ischemic stroke by regulating T cells, while the respective contribution of T cells with high/medium/low-affinity IL-2 receptors remained unclear. Single-cell RNA sequencing data of ischemic brain tissue revealed that most of the high-affinity IL-2R would be expressed by CD8 + T cells, especially by a highly-proliferative subset. Interestingly, only the CD8 + T cells with high-affinity IL-2R infiltrated ischemic brain tissues, highly expressing 32 genes (including Cdc20, Cdca3/5, and Asns) and activating 7 signaling pathways (including the interferon-alpha response pathway, a key mediator in the proliferation, migration, and cytotoxicity of CD8 + T cells).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!