A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased Precipitation and Nitrogen Alter Shrub Architecture in a Desert Shrubland: Implications for Primary Production. | LitMetric

Shrublands are one of the major types of ecosystems in the desert regions of northern China, which is expected to be substantially more sensitive to global environmental changes, such as widespread nitrogen enrichment and precipitation changes, than other ecosystem types. However, the interactive effects of nitrogen and precipitation on them remain poorly understood. We conducted a fully factorial field experiment simulating three levels of precipitation (ambient, +20%, +40%) and with two levels of nitrogen deposition (ambient, 60 kg N ha yr) in a desert shrubland in the Mu Us Desert of northern China. We used plant architectural traits (plant cover, volume, twig size and number) as proxies to predict aboveground net primary productivity (ANPP) of the dominant shrub ( Krasch), and assessed the responses of plant productivity and architectural traits to water and nitrogen addition. We found significant differences in twig size and number of under water and nitrogen treatments but not in shrub cover/volume, which suggest that twig size and number of the shrub species were more sensitive to environmental changes. The productivity of the overall community was sensitive to increased precipitation and nitrogen, and shrubs played a more important role than herbaceous plants in driving productivity in this ecosystem. Precipitation- and nitrogen-induced increases in vegetation production were positively associated with increases in twig size and number of the dominant shrub. Water addition enhanced the twig length of , while nitrogen addition resulted in increased twig density (the number of twigs per square meter). Water and nitrogen interacted to affect twig length, but not twig number and shrub ANPP. The trade-off, defined as negative covariance between twig size and number, was likely the mechanism underlying the responses of twig length and shrub ANPP to water and nitrogen interactions. Our results highlight the sensitivity of twig size and number as indicators to estimate shrub production and the mechanism underpinning desert shrub ANPP response to global environmental changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167761PMC
http://dx.doi.org/10.3389/fpls.2016.01908DOI Listing

Publication Analysis

Top Keywords

twig size
24
size number
24
water nitrogen
16
environmental changes
12
twig length
12
shrub anpp
12
twig
11
nitrogen
10
shrub
9
increased precipitation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!