The Antitoxin Protein of a Toxin-Antitoxin System from Is Secreted via Outer Membrane Vesicles.

Front Microbiol

Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil.

Published: December 2016

The subsp strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from subsp. strain 9a5c. These proteins display a high similarity to their homologs in strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from . The characterization was performed using assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from strain 9a5c, and we also discuss the possible influence of wild-type XfYgiT in the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167779PMC
http://dx.doi.org/10.3389/fmicb.2016.02030DOI Listing

Publication Analysis

Top Keywords

strain 9a5c
12
toxin-antitoxin system
8
outer membrane
8
membrane vesicles
8
subsp strain
8
biofilm formation
8
western blotting
8
wild-type xfygit
8
xfygit
5
antitoxin protein
4

Similar Publications

is the causal agent of several plant diseases affecting fruit and nut crops. strain SR1.6/6 was isolated from and shown to promote plant growth by producing phytohormones, providing nutrients, inhibiting , and preventing Citrus Variegated Chlorosis.

View Article and Find Full Text PDF

colonizes the xylem of various cultivated and native plants worldwide. Citrus production in Brazil has been seriously affected, and major commercial varieties remain susceptible to Citrus Variegated Chlorosis (CVC). Collective cellular behaviors such as biofilm formation influence virulence and insect transmission of .

View Article and Find Full Text PDF

releases outer membrane vesicles (OMVs) known to play a role in the systemic dissemination of this pathogen. OMVs inhibit bacterial attachment to xylem wall and traffic lipases/esterases that act on the degradation of plant cell wall. Here, we extended the characterization of OMVs by identifying proteins and metabolites potentially associated with OMVs produced by Temecula1, a Pierce's disease strain, and by 9a5c and Fb7, two citrus variegated chlorosis strains.

View Article and Find Full Text PDF

Determination of Extracellular Proteins from .

Front Microbiol

December 2016

Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil.

The phytopathogen causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of . Here, we provide a detailed characterization of the extracellular proteins of .

View Article and Find Full Text PDF

The Antitoxin Protein of a Toxin-Antitoxin System from Is Secreted via Outer Membrane Vesicles.

Front Microbiol

December 2016

Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil.

The subsp strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!