Spectral Variability in the Aged Brain during Fine Motor Control.

Front Aging Neurosci

BrainImaging and NeuroStimulation Laboratory, Department of Neurology, University Medical Center Hamburg-EppendorfHamburg, Germany; Institute of Neuroscience, Favaloro UniversityBuenos Aires, Argentina; Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL)Geneva, Switzerland; Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais)Sion, Switzerland.

Published: December 2016

Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly ( = 32) and young ( = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175385PMC
http://dx.doi.org/10.3389/fnagi.2016.00305DOI Listing

Publication Analysis

Top Keywords

aged brain
28
brain
9
motor
8
fine motor
8
age-related changes
8
changes spectral
8
spectral distribution
8
skilled motor
8
spectral entropy
8
cortical motor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!