Photoacoustic spectroscopy measurements of flame-generated soot aerosol coated with small amounts of water yielded absorption enhancements that were dependent on the laser used: quasi-continuous wave (Q-CW, ≈ 650 ps pulse duration and 78 MHz repetition rate) versus continuous wave (CW). Water coating thickness was controlled by exposing the aerosol to a set relative humidity (RH). At ≈ 85 % RH, the mass of the soot particles increased by an amount comparable to a monolayer of water being deposited and enhanced the measured absorption by 36 % and 15 % for the Q-CW and CW lasers, respectively. Extinction measurements were also performed using a cavity ring-down spectrometer (extinction equals the sum of absorption and scattering) with a CW laser and negligible enhancement was observed at all RH. These findings demonstrate that source choice can impact measurements of aerosols with volatile coatings and that the absorption enhancements at high RH previously measured by Radney and Zangmeister (2015) [1] are the result of laser source used (Q-CW) and not from an increase in the particle absorption cross section.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207050 | PMC |
http://dx.doi.org/10.1016/j.jqsrt.2016.09.026 | DOI Listing |
Anal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.
Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.
View Article and Find Full Text PDFSci Rep
January 2025
Nonprofitable Organization Touche NPO, Sapporo, 060-004, Japan.
In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.
View Article and Find Full Text PDFAnal Chem
January 2025
International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.
View Article and Find Full Text PDFPhotoacoustics
February 2025
College of Engineering, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
A novel balloon-type photoacoustic cell (BTPAC) is proposed to facilitate the detection limitations of acetylene (CH) gas achieving ppb level. Here, an ellipsoidal photoacoustic cavity is employed as the platform for gas-light interaction. By strategically directing the excitation source towards the focal point of the ellipsoidal cavity, ensuring its trajectory traverses the focal point upon each reflection from the interior walls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!