Ubiquitination and phosphorylation of proteins represent post translational modifications (PTMs) capable of regulating a variety of cellular processes. In the neurodegenerative disorder spinocerebellar ataxia type 3 (SCA3), the disease causing protein ataxin-3 carries an expanded polyglutamine (polyQ) stretch causing it to aggregate in nuclear inclusions. These inclusions are decorated with ubiquitin suggestive of a malfunction in the clearance of the mutant protein. Differences in ubiquitin chain topology between normal and polyQ expanded ataxin-3 could be involved in the differential clearance of the two proteins and play a role in SCA3 pathogenesis. Likewise, changes in phosphorylation patterns between the two variants could contribute to pathogenic processes involved in SCA3. We therefore determined the ubiquitination and phosphorylation patterns, together with the ubiquitin-linkage types associated with normal and polyQ expanded ataxin-3 by mass spectrometry (MS). This analysis revealed a similar ubiquitin linkage pattern on normal and expanded ataxin-3. However, the distribution of ubiquitinated lysine residues was altered in polyQ expanded ataxin-3, with increased ubiquitination at the new identified ubiquitination site lysine-8. MS analysis of phosphorylation also revealed novel phosphorylation sites in ataxin-3, and an increase in phosphorylation of expanded ataxin-3 at several positions. The study suggests that differences in clearance of normal and expanded ataxin-3 are not attributed to differences in ubiquitin-linkage pattern. However, the observed differences between the normal and polyQ expanded ataxin-3 with respect to the degree of ubiquitination and phosphorylation on specific sites may have an impact on ataxin-3 function and SCA3 pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2016.12.019 | DOI Listing |
Antioxidants (Basel)
December 2024
Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan.
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons and is predominantly degraded by autophagy, which is beneficial for neurodegenerative disease treatment. Not only does mutant polyQ-expanded ataxin-3 increase susceptibility to oxidative cytotoxicity, but it also hampers antioxidant potency in neuronal cells.
View Article and Find Full Text PDFPLoS One
December 2024
Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain.
Spinocerebellar ataxia type 3 (SCA3) is a cureless neurodegenerative disease recognized as the most prevalent form of dominantly inherited ataxia worldwide. The main hallmark of SCA3 is the expansion of a polyglutamine tract located in the C-terminal of Ataxin-3 (or ATXN3) protein, that triggers the mis-localization and toxic aggregation of ATXN3 in neuronal cells. The propensity of wild type and polyglutamine-expanded ATXN3 proteins to aggregate has been extensively studied over the last decades.
View Article and Find Full Text PDFJ Neurol
December 2024
Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.
Introduction: Knowledge about the distribution and frequency of the respective haplotypes on the wildtype and mutant allele is highly relevant in the context of future gene therapy clinical studies in Spinocerebellar Ataxia Type 3, the most common autosomal dominantly inherited ataxia. Single nucleotide polymorphisms associated to the disease-causing gene, ATXN3, have been determined. We wanted to investigate the frequency and regional distribution of two intragenic single nucleotide polymorphisms (SNPs) in a large European SCA3 cohort and their relation to the clinical phenotype.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan.
Polyglutamine (polyQ)-mediated spinocerebellar ataxia (SCA), including SCA1, 2, 3, 6, 7, and 17, are caused by mutant genes with expanded CAG repeats, leading to the intracellular accumulation of aggregated proteins, the production of reactive oxygen species, and cell death. Among SCA, SCA3 is caused by a mutation in the ATXN3 (ataxin-3) gene. In a circumstance of polyQ aggregation, the autophagic pathway is induced to degrade the aggregated proteins, thereby suppressing downstream deleterious effects and promoting neuronal survival.
View Article and Find Full Text PDFExpert Rev Mol Med
September 2024
Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain.
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!