Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: A small proportion of patients account for a high proportion of healthcare use. Accurate preemptive identification may facilitate tailored intervention. We sought to determine whether machine learning techniques using text from a family practice electronic medical record can be used to predict future high emergency department use and total costs by patients who are not yet high emergency department users or high cost to the healthcare system.
Methods: Text from fields of the cumulative patient profile within an electronic medical record of 43,111 patients was indexed. Separate training and validation cohorts were created. After processing, 11,905 words were used to fit a logistic regression model. The primary outcomes of interest in the 12 months after prediction were 3 or more emergency department visits and being in the top 5% in healthcare expenditures. Outcomes were assessed through linkage to administrative databases housed at the Institute for Clinical Evaluative Sciences.
Results: In the model to predict frequent emergency department visits, after excluding patients who were high emergency department users in the previous year, the area under the receiver operating characteristic curve was 0.71. By using the same methodology, the model to predict the top 5% in total system costs had an area under the receiver operating characteristic curve of 0.76.
Conclusions: Machine learning techniques can be applied to analyze free text contained in electronic medical records. This dataset is more predictive of patients who will generate future high costs than future emergency department visits. It remains to be seen whether these predictions can be used to reduce costs by early interventions in this cohort of patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjmed.2016.12.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!