Bacteria have had a fundamental impact on vertebrate evolution not only by affecting the evolution of the immune system, but also generating complex interactions with behavior and physiology. Advances in molecular techniques have started to reveal the intricate ways in which bacteria and vertebrates have coevolved. Here, we focus on birds as an example system for understanding the fundamental impact bacteria have had on the evolution of avian immune defenses, behavior, physiology, reproduction and life histories. The avian egg has multiple characteristics that have evolved to enable effective defense against pathogenic attack. Microbial risk of pathogenic infection is hypothesized to vary with life stage, with early life risk being maximal at either hatching or fledging. For adult birds, microbial infection risk is also proposed to vary with habitat and life stage, with molt inducing a period of increased vulnerability. Bacteria not only play an important role in shaping the immune system as well as trade-offs with other physiological systems, but also for determining digestive efficiency and nutrient uptake. The relevance of avian microbiomes for avian ecology, physiology and behavior is highly topical and will likely impact on our understanding of avian welfare, conservation, captive breeding as well as for our understanding of the nature of host-microbe coevolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yhbeh.2016.12.003 | DOI Listing |
J Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
Mol Biol Rep
January 2025
Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.
Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.
View Article and Find Full Text PDFVet Res Commun
January 2025
College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China.
Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.
View Article and Find Full Text PDFNeurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!