At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence-labeled polystyrene particles and to study the respective method́s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410379PMC
http://dx.doi.org/10.1016/j.tox.2017.01.001DOI Listing

Publication Analysis

Top Keywords

phagocytes non-phagocytic
12
non-phagocytic cells
12
uptake phagocytes
8
cellular uptake
8
plate reader
8
presence serum
8
amine-functionalized particles
8
uptake
6
particles
6
comparison fluorescence-based
4

Similar Publications

Mesenchymal stromal cells-extracellular vesicles: protein corona as a camouflage mechanism?

Extracell Vesicles Circ Nucl Acids

November 2024

Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy.

Mesenchymal stromal cells (MSCs) showed promising potential for regenerative and therapeutic applications for several pathologies and conditions. Their potential is mainly ascribed to the factors and extracellular vesicles (EVs) they release, which are now envisioned as cell-free therapeutics in cutting-edge clinical studies. A main cornerstone is the preferential uptake by target cells and tissues, in contrast to clearance by phagocytic cells or removal from circulation before reaching the final destination.

View Article and Find Full Text PDF

: Macrophage-mediated cancer cell phagocytosis has demonstrated considerable therapeutic potential. While the initiation of phagocytosis, facilitated by interactions between cancer cell surface signals and macrophage receptors, has been characterized, the mechanisms underlying its sustentation and attenuation post-initiation remain poorly understood. : Through comprehensive phosphoproteomic profiling, we interrogated the temporal evolution of the phosphorylation profiles within macrophages during cancer cell phagocytosis.

View Article and Find Full Text PDF

Human genetic variation reveals FCRL3 is a lymphocyte receptor for .

bioRxiv

December 2024

Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.

is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing).

View Article and Find Full Text PDF

() is capable of causing pneumonia, arthritis, mastitis, and various other ailments in cattle of all age groups, posing a significant threat to the healthy progression of the worldwide cattle industry. The invasion of non-phagocytic host cells serves as a pivotal mechanism enabling to evade the immune system and penetrate mucosal barriers, thereby promoting its spread. To investigate the differences in invasion into four types of non-phagocytic cells (Madin-Darby bovine kidney (MDBK) cells, embryonic bovine lung (EBL) cells, bovine embryo tracheal (EBTr) cells and bovine turbinate (BT) cells) and further elucidate its invasion mechanism, this study first optimized the experimental methods for invasion into cells.

View Article and Find Full Text PDF
Article Synopsis
  • Rheumatoid arthritis (RA) is driven by chronic inflammation in the synovial membrane, primarily caused by immune cells like macrophages and osteoclasts that lead to cartilage and bone destruction.
  • Circulating monocytes differentiate into macrophages and osteoclasts in RA, with synovial macrophages categorized into proinflammatory (M1) and anti-inflammatory (M2) types.
  • Recent studies highlight the link between various subsets of these immune cells and RA, along with a notable association between periodontopathic bacteria and the development of the disease.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!