Picornaviruses are small positive-sense single-stranded RNA viruses that include many important human pathogens. Within the host cell, they replicate at specific replication sites called replication organelles. To create this membrane platform, they hijack several host factors including the acyl-CoA-binding domain-containing protein-3 (ACBD3). Here, we present a structural characterization of the molecular complexes formed by the non-structural 3A proteins from two species of the Kobuvirus genus of the Picornaviridae family and the 3A-binding domain of the host ACBD3 protein. Specifically, we present a series of crystal structures as well as a molecular dynamics simulation of the 3A:ACBD3 complex at the membrane, which reveals that the viral 3A proteins act as molecular harnesses to enslave the ACBD3 protein leading to its stabilization at target membranes. Our data provide a structural rationale for understanding how these viral-host protein complexes assemble at the atomic level and identify new potential targets for antiviral therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2016.11.021DOI Listing

Publication Analysis

Top Keywords

acbd3 protein
12
non-structural proteins
8
proteins molecular
8
molecular harnesses
8
hijack host
8
host acbd3
8
kobuviral non-structural
4
molecular
4
harnesses hijack
4
host
4

Similar Publications

The inclusion membrane protein Cpn0308 interacts with host protein ACBD3.

J Bacteriol

December 2024

Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China.

is an obligate intracellular bacterium of eukaryotic cells characterized by a unique biphasic life cycle; its biosynthesis and replication must occur within a cytoplasmic vacuole or inclusion. Certain inclusion membrane proteins have been demonstrated to mediate the interactions between intra-inclusion chlamydial organisms and the host cell. It has been demonstrated previously that the -encoded Cpn0308 localizes to the inclusion membrane; however, its function remains unknown.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) play an important role in regulating inflammation and oxidative stress during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD); however, the underlying mechanism is unclear. This study aimed to determine the role of mmu_circ_0009303 in MASLD. We used a bioinformatics approach to identify potential targets and established an in vitro model of MASLD.

View Article and Find Full Text PDF

Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, is emerging as a promising target in cancer therapy. It is regulated by a network of molecules and pathways that modulate lipid metabolism, iron homeostasis and redox balance, and related processes. However, there are still numerous regulatory molecules intricately involved in ferroptosis that remain to be identified.

View Article and Find Full Text PDF

DGARM/C10orf76/ARMH3 for Ceramide Transfer Zone at the Endoplasmic Reticulum-Distal Golgi Contacts.

Contact (Thousand Oaks)

March 2024

Department of Quality Assurance, Radiation Safety and Information System, National Institute of Infectious Diseases, Tokyo, Japan.

Phosphatidylinositol 4-monophosphate (PtdIns(4)P) is one of the key membrane components which mark the membrane contact sites. In the mammalian Golgi complex, PtdIns(4)P is produced at various subregions via specific mechanisms for each site. Particularly, PtdIns(4)P pools generated at the distal Golgi regions are pivotal for the determination of membrane contacts between the endoplasmic reticulum (ER) and Golgi, at which inter-organelle lipid transport takes place.

View Article and Find Full Text PDF

The activation of the adaptor protein STING depends on its interactions with the phospholipid PI4P.

Sci Signal

March 2024

Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.

Activation of the endoplasmic reticulum (ER)-resident adaptor protein STING, a component of a cytosolic DNA-sensing pathway, induces the transcription of genes encoding type I interferons (IFNs) and other proinflammatory factors. Because STING is activated at the Golgi apparatus, control of the localization and activation of STING is important in stimulating antiviral and antitumor immune responses. Through a genome-wide CRISPR interference screen, we found that STING activation required the Golgi-resident protein ACBD3, which promotes the generation of phosphatidylinositol 4-phosphate (PI4P) at the trans-Golgi network, as well as other PI4P-associated proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!