In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.12.102DOI Listing

Publication Analysis

Top Keywords

disperser liquefaction
12
algal biomass
12
methane production
8
chemo disperser
8
usd/ton algal
8
liquefaction
6
energy-efficient methane
4
production macroalgal
4
biomass
4
macroalgal biomass
4

Similar Publications

Today, new energy sources alternative to fossil fuels are needed to meet the increasing energy demand. It is becoming increasingly important to constitute new energy sources from waste biomass through the liquefaction process. In this study, walnut shells (WS) were liquefied catalytically and non-catalytically under different parameters using the liquefaction method.

View Article and Find Full Text PDF

Catalytic Supercritical Water Gasification of Canola Straw with Promoted and Supported Nickel-Based Catalysts.

Molecules

February 2024

Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.

Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass such as canola straw suffers from low hydrogen yield, hydrogen selectivity, and conversion efficiencies.

View Article and Find Full Text PDF

Metal-containing nanoparticles possess nanoscale sizes, but the exploitation of their nanofeatures in nanofabrication processes remains challenging. Herein, we report the realization of a class of zinc-based nanoparticle liquids and their potential for applications in controlled nanofabrication. Utilizing the metal-core charge shielding strategy, we prepared nanoparticles that display glass-to-liquid transition behavior with glass transition temperature far below room temperature (down to -50.

View Article and Find Full Text PDF

Multifunctional liquid-like magnetic nanofluids mediated coating with anticorrosion and self-healing performance.

J Colloid Interface Sci

January 2024

College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, China. Electronic address:

The long-term protective efficacy of organic coatings against corrosion can be diminished by the presence of micropores/cracks and poor self-healing capabilities. To address these issues, TiC MXene was subjected to liquefaction-like treatment to maintain a two-dimensional lamellar structure in water and polymer matrix for a long time, as well as improve the dispersion stability and loading capacity of MXene. The inorganic corrosion inhibitor ferroferric oxide (FeO) was then electrostatically loaded onto MXene nanofluids to obtain a hybrid material.

View Article and Find Full Text PDF

In this study, the production of isomaltooligosaccharide from potato peel starch was carried out in three steps: liquefaction, saccharification, and transglucosylation. Further, cloning α-transglucosidase gene from Aspergillus niger (GH31 family), transforming into E. coli BL21 (DE3), overexpressing and purifying the resulting protein for the production of α-transglucosidase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!