Fusarium graminearum is the primary causal agent of Fusarium head blight of wheat in Argentina. This disease affects crop yields and grain quality also reducing the wheat end-use, and causing mycotoxin contamination. The aim of this work was to analyze the phenotypic characteristics associated with phenotypic diversity and aggressiveness of 34 F. graminearum sensu stricto isolates recovered from Argentinean fields in the 2008 growing season using the Fourier Transform Infrared (FTIR) dried film technology. We applied this technique also to search for spectral specific markers associated with aggressiveness. The combination of FTIR technology with hierarchical cluster analysis allowed us to determine that this population constitutes a highly diverse and heterogeneous group of fungi with significant phenotypic variance. Still, when the spectral features of a set of these isolates were compared against their aggressiveness, as measured by disease severity, thousand grains weight, and relative yield reduction, we found that the more aggressive isolates were richer in lipid content. Therefore, we could define several spectroscopic markers (>CH stretching modes in the 3000-2800 window, >CO and CO vibrational modes of esters at 1765-1707cm and 1474-900cm, respectively), mostly assigned to lipid content that could be associated with F. graminearum aggressiveness. All together, by the application of FTIR techniques and simple multivariate analyses, it was possible to gain significant insights into the phenotypic characterization of F. graminearum local isolates, and to establish the existence of a direct relationship between lipid content and fungal aggressiveness. Considering that lipids have a major role as mediators in the interaction between plants and fungi our results could represent an attractive outcome in the study of Fusarium pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2016.12.016 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.
A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFCell Rep
January 2025
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:
Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nutrition, Second Military Medical University, Shanghai, China.
Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.
Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!