Evaluation of a Novel Renewable Hepatic Cell Model for Prediction of Clinical CYP3A4 Induction Using a Correlation-Based Relative Induction Score Approach.

Drug Metab Dispos

Corning Life Sciences, Bedford, Massachusetts (R.Z., F.L., S.P., L.C., K.L.C.); Corning, Science and Technology, Corning, New York (Y.H., J.L., R.A.F.); and University of Maryland, School of Pharmacy, Baltimore, Maryland (D.L., H.W.).

Published: February 2017

Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267519PMC
http://dx.doi.org/10.1124/dmd.116.072124DOI Listing

Publication Analysis

Top Keywords

human hepatocytes
20
primary human
16
cyp3a4 induction
12
relative induction
8
induction score
8
corning hepatocells
8
hepatocells
7
induction
6
primary
6
human
6

Similar Publications

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

A 3D Cell-Culture System That Uses Nano-Fibrillated Bacterial Cellulose to Prepare a Spherical Formulation of Culture Cells.

Biol Pharm Bull

January 2025

Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.

A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.

View Article and Find Full Text PDF

Novel tertiary diarylethylamines as functionally selective agonists of the kappa opioid receptor.

Bioorg Med Chem Lett

January 2025

Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.

Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).

View Article and Find Full Text PDF

Chronic environmental exposure to polystyrene microplastics increases the risk of nonalcoholic fatty liver disease.

Toxicology

January 2025

Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Key Laboratory of Non coding RNA Basic and Clinical Transformation, Yangzhou University, Yangzhou, Jiangsu Province 225009, China. Electronic address:

Microplastics (MPs), as the crucial environmental pollutants, can be easily transported into the human body and accumulate in the liver. However, current studies mainly focus on acute exposure to MPs, investigations on long-term interactions with MPs alone remain limited. Thereby, we examined noxious properties of MPs and selected the most common polystyrene (PS) MPs as the research object, including unmodified PS MPs (PS-MPs) and positive-charged PS MPs (PS-NH) at 10 mg/L employing oral drinking water methods in mice for six consecutive months in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!