Despite new insights into the pathophysiology of schizophrenia and clinical trials with highly selective drugs, no new therapeutic breakthroughs have been identified. We present a semi-mechanistic Quantitative Systems Pharmacology (QSP) computer model of a biophysically realistic cortical-striatal-thalamo-cortical loop. The model incorporates the direct, indirect and hyperdirect pathway of the basal ganglia and CNS drug targets that modulate neuronal firing, based on preclinical data about their localization and coupling to voltage-gated ion channels. Schizophrenia pathology is introduced using quantitative human imaging data on striatal hyperdopaminergic activity and cortical dysfunction. We identified an entropy measure of neuronal firing in the thalamus, related to the bandwidth of information processing that correlates well with reported historical clinical changes on PANSS Total with antipsychotics after introduction of their pharmacology (42 drug-dose combinations, r=0.62). This entropy measure is further validated by predicting the clinical outcome of 28 other novel stand-alone interventions, 14 of them with non-dopamine DR pharmacology, in addition to 8 augmentation trials (correlation between actual and predicted clinical scores r=0.61). The platform predicts that most combinations of antipsychotics have a lower efficacy over what can be achieved by either one; negative pharmacodynamical interactions are prominent for aripiprazole added to risperidone, haloperidol, quetiapine and paliperidone. The model also recapitulates the increased probability for psychotic breakdown in a supersensitive environment and the effect of ketamine in healthy volunteers. This QSP platform, combined with similar readouts for motor symptoms, negative symptoms and cognitive impairment has the potential to improve our understanding of drug effects in schizophrenia patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.euroneuro.2016.12.006 | DOI Listing |
Int J Mol Sci
December 2024
Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Circadian rhythms are important for maintaining homeostasis, from regulating physiological activities (e.g., sleep-wake cycle and cognitive performance) to cellular processes (e.
View Article and Find Full Text PDFBiomedicines
December 2024
Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
: The anterior cingulate cortex (ACC) is known for its involvement in various regulatory functions, including in the central control of feeding. Activation of local elements of the central glucose-monitoring (GM) neuronal network appears to be indispensable in these regulatory processes. Destruction of these type 2 glucose transporter protein (GLUT2)-equipped chemosensory cells results in multiple feeding-associated functional alterations.
View Article and Find Full Text PDFBiomolecules
December 2024
Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France.
We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer's disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days in vitro. We now investigate the effect of MT5-MMP on incipient pathogenic pathways that are activated in cortical primary cultures at 21-24 days in vitro (DIV), during which time neurons are organized into a functional mature network. Using wild-type (WT), MT5-MMP (MT5), 5xFAD (Tg), and 5xFADxMT5-MMP (TgMT5) mice, we generated primary neuronal cultures that were exposed to IL-1β and/or different proteolytic system inhibitors.
View Article and Find Full Text PDFAdaptive behavior depends on the ability to predict specific events, particularly those related to rewards. Armed with such associative information, we can infer the current value of predicted rewards based on changing circumstances and desires. To support this ability, neural systems must represent both the value and identity of predicted rewards, and these representations must be updated when they change.
View Article and Find Full Text PDFUnlabelled: The basal ganglia play a crucial role in action selection by facilitating desired movements and suppressing unwanted ones. The substantia nigra pars reticulata (SNr), a key output nucleus, facilitates movement through disinhibition of the superior colliculus (SC). However, its role in action suppression, particularly in primates, remains less clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!