Molecular methods are fundamental tools for the diagnosis of viral infections. While interpretation of results is straightforward for unvaccinated animals, where positivity represents ongoing or past infections, the presence of vaccine virus in the tissues of recently vaccinated animals may mislead diagnosis. In this study, we investigated the interference of RHDV2 vaccination in the results of a RT-qPCR for RHDV2 detection, and possible associations between mean Cq values of five animal groups differing in age, vaccination status and origin (domestic/wild). Viral sequences from vaccinated rabbits that died of RHDV2 infection (n=14) were compared with the sequences from the commercial vaccines used in those animals. Group Cq means were compared through Independent t-test and One-way ANOVA. We proved that RHDV2 vaccine-RNA is not detected by the RT-qPCR as early as 15days post-vaccination, an important fact in assisting results interpretation for diagnosis. Cq values of vaccinated and non-vaccinated infected domestic adults showed a statistically significant difference (p<0.05), demonstrating that vaccination-induced immunity reduces viral loads and delays disease progression. Contrarily, in vaccinated young rabbits higher viral loads were registered compared to non-vaccinated kittens. No significant variation (p=0.3824) was observed between viral loads of non-vaccinated domestic and wild RHDV2-victimised rabbits. Although the reduced number of vaccinated young animals analysed hampered a robust statistical analysis, this occurrence suggests that passively acquired maternal antibodies may inhibit the active immune response to vaccination, delaying protection and favouring disease progression. Our finding emphasises the importance of adapting kitten RHDV2 vaccination schedules to circumvent this interference phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2016.12.006 | DOI Listing |
J Infect Dis
December 2024
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
Background: Enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi A in addition to gastroenteritis and invasive disease, predominantly attributable to nontyphoidal Salmonella serovars Typhimurium and Enteritidis, are major causes of death and disability across the globe. A broad-spectrum vaccine that protects against disease caused by typhoidal and nontyphoidal serovars of Salmonella is not available for humans but would prevent a considerable burden of disease worldwide.
Methods: We previously developed a broad-spectrum vaccine for Gram-negative bacteria that is based on the inner core domain of detoxified Escherichia coli O111, Rc (J5) mutant lipooligosaccharide, a highly conserved antigen across Gram-negative bacteria, complexed with an outer membrane protein of group B Neisseria meningitidis.
Sci Rep
December 2024
Department of Biotechnology, Faculty of Agro-industry, Kasetsart University, Bangkok, 10900, Thailand.
Tilapia lake virus (TiLV) disease is highly contagious and causes substantial mortality in tilapia. Currently, no effective treatments or commercial vaccines are available to prevent TiLV infection. In this study, TiLV segment 4 (S4) was cloned into the pET28a(+)vector and transformed into Escherichia coli BL21(DE3).
View Article and Find Full Text PDFBraz J Microbiol
December 2024
Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan.
Epsilon toxin (ETX) is an exotoxin produced by Clostridium perfringens type D that induces enterotoxaemia or necrotic intestinal infection in small ruminants and bovine. Immunization is an essential element in preventing the spread of infectious diseases. In recent literature, nanocarriers have exhibited the capacity to deliver protection, stability, and regulated distribution properties to protein-based antigens.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Medicine, UConn Health, Farmington, Connecticut, United States of America.
The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded β-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). We identified five immunodominant loops from the FadL orthologs TP0856, TP0858 and TP0865 by immunoblotting and ELISA.
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
Protein subunit vaccines, lacking pathogen-associated molecular patterns that trigger immune responses, rely on adjuvants to induce robust immune responses against the target pathogen. Thus, selection of adjuvants plays a crucial role in the design of protein subunit vaccines. Recently, there has been growing interest in utilizing cGAS-STING agonists as vaccine adjuvants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!