Covalent Functionalization of Organic Nanoparticles Using Aryl Diazonium Chemistry and Their Solvent-Dependent Self-Assembly.

Langmuir

Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research (CSIR) , Trivandrum 695019, India.

Published: February 2017

A simple method for covalent functionalization of Fréchet-type dendron nanoparticles (FDNs) using tris-bipyridylruthenium(II) is described. Covalent functionalization is achieved by chemically reducing the diazo derivative of a ruthenium(II)bipyridine complex in the presence of FDNs wherein the radical species generated gets covalently linked to the nanoparticle surface. Simplicity, rapidity, and robustness are the advantages offered by the present approach. The nanoparticles, post functionalization, were characterized using transmission electron microscopy, thermogravimetric analysis, and infrared, energy-dispersive X-ray, UV-visible, and nuclear magnetic resonance spectroscopic techniques. Depending on the solvent, the ruthenium complex-linked FDN displays a range of morphologies, including nanoparticles, fiber-networks, and nanocapsules. In the nanocapsules and fiber-networks observed in organic solvents, the ruthenium complex is confined within the interior domain of the aggregate, whereas in the nanoparticles observed in water, it is present on the periphery. The formation of predictable morphologies in different solvents plays a key role in using such self-assembled structures for various applications such as sensing, catalysis, and light harvesting. Characterization of these nanoaggregates using different spectroscopic and microscopic techniques is also described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b03269DOI Listing

Publication Analysis

Top Keywords

covalent functionalization
12
nanoparticles
5
functionalization organic
4
organic nanoparticles
4
nanoparticles aryl
4
aryl diazonium
4
diazonium chemistry
4
chemistry solvent-dependent
4
solvent-dependent self-assembly
4
self-assembly simple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!