An enantiomer-based virtual screening approach: Discovery of chiral organophosphates as acetyl cholinesterase inhibitors.

Ecotoxicol Environ Saf

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Published: April 2017

Chiral organophosphates (OPs) have been used widely around the world, very little is known about binding mechanisms with biological macromolecules. An in-depth understanding of the stereo selectivity of human AChE and discovering bioactive enantiomers of OPs can decrease health risks of these chiral chemicals. In the present study, a flexible molecular docking approach was conducted to investigate different binding modes of twelve phosphorus enantiomers. A pharmacophore model was then developed on basis of the bioactive conformations of these compounds. After virtual screening, twenty-four potential bioactive compounds were found, of which three compounds (Ethyl p-nitrophenyl phenylphosphonate (EPN), 1-naphthaleneacetic anhydride and N,4-dimethyl-N-phenyl-benzenesulfonamide) were tested by use of different in vitro assays. S-isomer of EPN was also found to exhibit greater inhibitory activity towards human AChE than the corresponding R-isomer. These findings affirm that stereochemistry plays a crucial role in virtual screening, and provide a new insight into designing safer organ phosphorus pesticides on human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2016.12.035DOI Listing

Publication Analysis

Top Keywords

virtual screening
12
chiral organophosphates
8
human ache
8
enantiomer-based virtual
4
screening approach
4
approach discovery
4
discovery chiral
4
organophosphates acetyl
4
acetyl cholinesterase
4
cholinesterase inhibitors
4

Similar Publications

Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant Typhimurium.

Biochem Biophys Rep

March 2025

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.

The rising resistance to fluoroquinolones in Typhimurium poses a significant global health challenge. This computational research addresses the pressing need for new therapeutic drugs by utilizing various computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the wild-type DNA gyrase A protein was modeled using homology modeling, and followed by mutagenesis to create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure.

View Article and Find Full Text PDF

An approach to predict and inhibit Amyloid Beta dimerization pattern in Alzheimer's disease.

Toxicol Rep

June 2025

Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India.

Alzheimer's Disease (AD) is one of the leading neurodegenerative diseases that affect the human population. Several hypotheses are in the pipeline to establish the commencement of this disease; however, the amyloid hypothesis is one of the most widely accepted ones. Amyloid plaques are rich in Amyloid Beta (Aβ) proteins, which are found in the brains of Alzheimer's patients.

View Article and Find Full Text PDF

Advancements in drug discovery: integrating CADD tools and drug repurposing for PD-1/PD-L1 axis inhibition.

RSC Adv

January 2025

LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal

Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed.

View Article and Find Full Text PDF

Identifying Natural Products as Feline Coronavirus M Inhibitors by Structural-Based Virtual Screening and Enzyme-Based Assays.

ACS Omega

January 2025

Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, P.R. China.

The main protease (M) is a pivotal target in the life cycle of feline coronavirus (FCoV), which causes a high mortality feline disease, feline infectious peritonitis (FIP). Virtual screening was performed against the feline coronavirus M to find active compounds with low toxicity from a library of natural products. Eighty-six compounds were selected by using the rank of docking score and binding pose analysis.

View Article and Find Full Text PDF

Isoxazole and oxadiazole derivatives inhibiting 3-hydroxykynurenine transaminase (3HKT) are potential larvicidal candidates. This study aims to identify more suited potential inhibitors of 3HKT (3HKT) through molecular docking and molecular dynamics simulation. A total of 958 compounds were docked against 3HKT (PDB ID: 2CH2) using Autodock vina and Autodock4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!