Single crystal synchrotron diffraction for pressures up to 50 GPa has revealed an essential difference in structural properties and compressibility of MnGe compared with Mn Co Ge and Mn Fe Ge solid solutions. A negative thermal expansion has been observed for MnGe at low-temperatures and high-pressures. The single crystal refinement has shown a discontinuous change of the atomic coordinates and Mn-Ge interatomic distances of MnGe in contrast to MnCoGe. These peculiarities of MnGe are likely to be associated with high-spin-low-spin transition. The relation between anisotropy of the coordination of Mn-atom and its magnetic moment is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aa5477DOI Listing

Publication Analysis

Top Keywords

synchrotron diffraction
8
single crystal
8
mnge
5
high-pressure single-crystal
4
single-crystal synchrotron
4
diffraction study
4
study mnge
4
mnge compounds
4
compounds single
4
crystal synchrotron
4

Similar Publications

In this study, we investigate structural disorder and its implications in metal cluster (MC)-based compounds, specifically focusing on Cs[{MoX}X] (X = Cl and Br). Utilizing synchrotron radiation X-ray diffraction, Fourier transform infrared spectroscopy, and luminescence measurements, we examined the incorporation of water molecules into these compounds and their effects on the crystal structure and optical properties. Our findings reveal that the presence of water molecules induces the lattice disorder, particularly the displacement of Cs atoms.

View Article and Find Full Text PDF

Parasitic structure defect blights sustainability of cobalt-free single crystalline cathodes.

Nat Commun

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.

Recent efforts to reduce battery costs and enhance sustainability have focused on eliminating Cobalt (Co) from cathode materials. While Co-free designs have shown notable success in polycrystalline cathodes, their impact on single crystalline (SC) cathodes remains less understood due to the significantly extended lithium diffusion pathways and the higher-temperature synthesis involved. Here, we reveal that removing Co from SC cathodes is structurally and electrochemically unfavorable, exhibiting unusual voltage fade behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on Kcoronene, a potassium-intercalated polycyclic aromatic hydrocarbon, detailing its synthesis, structure, and magnetic properties while outlining a computational method to identify suitable PAHs for metal intercalation.
  • Coronene was selected based on a screening of its electronic structure and available void space, demonstrating stability when intercalated with three potassium ions per coronene molecule.
  • Despite structural changes and disorder caused by potassium intercalation, Kcoronene did not exhibit superconductivity, which contrasts with earlier findings and may be linked to the extensive structural disruption observed.
View Article and Find Full Text PDF

Artificial heterostructures are often realized by stacking different materials to present new emerging properties that are not exhibited by their individual constituents. In this work, non-layered two-dimensional α-MnSe nanosheets were transferred onto LaMnO (LMO) films to obtain a multifunctional heterostructure. The high crystal quality of the MnSe/LMO heterostructure was revealed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy measurements.

View Article and Find Full Text PDF

The role of self-intercalation in 2D van der Waals materials is key to the understanding of many of their properties. Here we show that the magnetic ordering temperature of thin films of the 2D ferromagnet Fe_{5}GeTe_{2} is substantially increased by self-intercalated Fe that resides in the van der Waals gaps. The epitaxial films were prepared by molecular beam epitaxy and their magnetic properties explored by element-specific x-ray magnetic circular dichroism that showed ferromagnetic ordering up to 375 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!