MUC4 mucin is well known as an important potential target to overcome pancreatic cancer. Three unique domains (NIDO, AMOP, and vWD) with unclear roles only present in MUC4 but are not found in other membrane-bound mucins. Our previous studies first reported that its splice variant, MUC4/Y can be a model of MUC4 (MUC4 gene fragment is more than 30KB, too huge to clone and eukaryotic express) in pancreatic cancer. More importantly, based on MUC4/Y with the appropriate length of gene sequence, it is easy to construct the unique domain-lacking models of MUC4/Y (MUC4) for research. The present study focuses on investigation of the respective role of the unique NIDO, AMOP, and vWD domain or their synergistic effect on MUC4(MUC4/Y)-mediated functions and mechanisms by series of in vitro assays, sequence-based transcriptome analysis, validation of qRT-PCR & Western blot, and systematic comparative analysis. Our results demonstrate: 1) NIDO, AMOP, and vWD domain or their synergy play significant roles on MUC4/Y-mediated malignant function of pancreatic cancer, downstream of molecule mechanisms, particularly MUC4/Y-triggered malignancy-related positive feedback loops, respectively. 2) The synergistic roles of three unique domains on MUC4/Y-mediated functions and mechanisms are more prominent than the respective domain because the synergy of three domain plays the more remarkable effects on MUC4/Y-mediated signaling hub. Thus, to improve reversed effects of domain-lacking and break the synergism of domains will contribute to block MUC4/Y(MUC4) triggering various oncogenic signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354666 | PMC |
http://dx.doi.org/10.18632/oncotarget.14420 | DOI Listing |
Cancer Metastasis Rev
September 2020
Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
A dynamic mucosal layer shields the epithelial cells lining the body cavities and is made up of high molecular weight, heavily glycosylated, multidomain proteins called mucins. Mucins, broadly grouped into transmembrane and secreted mucins, are the first responders to any mechanical or chemical insult to the epithelia and help maintain tissue homeostasis. However, their intrinsic properties to protect and repair the epithelia are exploited during oncogenic processes, where mucins are metamorphosed to aid the tumor cells in their malignant journey.
View Article and Find Full Text PDFOncotarget
February 2017
Pancreas Institute of Nanjing Medical University, Nanjing, People's Republic of China.
MUC4 mucin is well known as an important potential target to overcome pancreatic cancer. Three unique domains (NIDO, AMOP, and vWD) with unclear roles only present in MUC4 but are not found in other membrane-bound mucins. Our previous studies first reported that its splice variant, MUC4/Y can be a model of MUC4 (MUC4 gene fragment is more than 30KB, too huge to clone and eukaryotic express) in pancreatic cancer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2007
Department of Medical Biochemistry, Institute of Biomedicine, Göteborg University, Box 440, SE-405 30 Göteborg, Sweden.
Mucins are proteins that cover and protect epithelial cells and are characterized by domains rich in proline, threonine, and serine that are heavily glycosylated (PTS or mucin domains). Because of their sequence polymorphism, these domains cannot be used for evolutionary analysis. Instead, we have made use of the von Willebrand D (VWD) and SEA domains, typical for mucins.
View Article and Find Full Text PDFGene
May 2006
Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, United States.
The MUC family of mucins consists of secreted and membrane-bound forms. Overexpression of the membrane-bound family members, MUC1 (CA15-3), MUC4 and MUC16 (CA125), is found in diverse human carcinomas. However, despite being classified in the same family, little is known about the genetic origins of the carcinoma-associated mucins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!