Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease of increasing prevalence marked by poor prognosis and limited treatment options. Ca-activated K3.1 potassium channels have been shown to play a key role in the aberrant activation and responses to injury in both epithelial cells and fibroblasts, both considered key drivers in the fibrotic process of IPF. Pharmacological inhibition of IPF-derived fibroblasts is able to somewhat prevent TGF-β- and basic fibroblast growth factor-dependent profibrotic responses. In the current study, we investigated whether blockade of the K3.1 ion channel in vivo with a selective inhibitor, Senicapoc, was able to attenuate both histological and physiological outcomes of early fibrosis in our large animal (sheep) model for pulmonary fibrosis. We also determined whether treatment was targeting the profibrotic activity of sheep lung fibroblasts. Senicapoc was administered in established fibrosis, at 2 weeks after bleomycin instillation, and drug efficacy was assessed 4 weeks after treatment. Treatment with Senicapoc improved pre-established bleomycin-induced changes compared with vehicle control, leading to improved lung compliance, reduced extracellular matrix and collagen deposition, and a reduction in both α-smooth muscle actin expression and proliferating cells, both in vivo and in vitro. These studies show that inhibiting the K3.1 ion channel is able to attenuate the early fibrogenic phase of bleomycin-dependent fibrosis and inhibits profibrotic behavior of primary sheep lung fibroblasts. This supports the previous research conducted in human IPF-derived fibroblasts and suggests that inhibiting K3.1 signaling may provide a novel therapeutic approach for IPF.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2016-0092OCDOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
12
fibrosis large
8
large animal
8
ipf-derived fibroblasts
8
k31 ion
8
ion channel
8
sheep lung
8
lung fibroblasts
8
inhibiting k31
8
fibrosis
6

Similar Publications

Chronic cough is a distressing and prevalent symptom in interstitial lung disease (ILD), significantly impairing quality of life (QoL) and contributing to disease progression, particularly in idiopathic pulmonary fibrosis (IPF). It is associated with physical discomfort, psychological distress, and social isolation and is often refractory to conventional therapies. The pathophysiology of cough in ILD is complex and multifactorial, involving neural hypersensitivity, structural lung changes, inflammatory processes, and comorbid conditions such as gastroesophageal reflux disease (GERD).

View Article and Find Full Text PDF

Interstitial Lung Disease Associated with Anti-Ku Antibodies: A Case Series of 19 Patients.

J Clin Med

January 2025

Department of Respiratory Medicine, National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, European Reference Network (ERN)-LUNG, 28 Avenue Doyen Lepine, 69677 Lyon, France.

Antibodies against Ku have been described in patients with various connective tissue diseases. The objective of this study was to describe the clinical, functional, and imaging characteristics of interstitial lung disease in patients with anti-Ku antibodies. : This single-center, retrospective observational study was conducted at a tertiary referral institution.

View Article and Find Full Text PDF

While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.

View Article and Find Full Text PDF

Ultrasonic Microfluidic Method Used for siHSP47 Loaded in Human Embryonic Kidney Cell-Derived Exosomes for Inhibiting TGF-β1 Induced Fibroblast Differentiation and Migration.

Int J Mol Sci

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.

View Article and Find Full Text PDF

Regulatory Roles of Noncanonical Inflammasomes in Inflammatory Lung Diseases.

Int J Mol Sci

December 2024

Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea.

The inflammatory response consists of two stages: priming and triggering. The triggering stage is marked by the activation of inflammasomes, which are cytosolic protein complexes acting as platforms for inflammation. Inflammasomes are divided into canonical and noncanonical categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!