Generation of Recombinant Vaccinia Viruses.

Curr Protoc Mol Biol

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.

Published: January 2017

This unit describes how to infect cells with vaccinia virus and then transfect them with a plasmid-transfer vector or PCR fragment to generate a recombinant virus. Selection and screening methods used to isolate recombinant viruses and a method for the amplification of recombinant viruses are described. Finally, a method for live immunostaining that has been used primarily for detection of recombinant modified vaccinia virus Ankara (MVA) is presented. © 2017 by John Wiley & Sons, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpmb.32DOI Listing

Publication Analysis

Top Keywords

vaccinia virus
8
recombinant viruses
8
generation recombinant
4
recombinant vaccinia
4
vaccinia viruses
4
viruses unit
4
unit describes
4
describes infect
4
infect cells
4
cells vaccinia
4

Similar Publications

A novel oncolytic Vaccinia virus armed with IL-12 augments antitumor immune responses leading to durable regression in murine models of lung cancer.

Front Immunol

January 2025

Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

Oncolytic vaccinia viruses (VVs) are potent stimulators of the immune system and induce immune-mediated tumor clearance and long-term surveillance against tumor recurrence. As such they are ideal treatment modalities for solid tumors including lung cancer. Here, we investigated the use of VVL-m12, a next-generation, genetically modified, interleukin-12 (IL-12)-armed VV, as a new therapeutic strategy to treat murine models of lung cancer and as a mechanism of increasing lung cancer sensitivity to antibody against programmed cell death protein 1 (α-PD1) therapy.

View Article and Find Full Text PDF

Background: In May, 2022, the first global outbreak of mpox (formerly known as monkeypox) occurred. In response, public health agencies in the UK have made smallpox vaccines available to individuals at the highest risk of infection. With mpox cases still being detected globally, novel tools are required to aid with diagnosis, serosurveillance, and the evaluation of immune responses following infection and immunisation with current and new vaccine candidates.

View Article and Find Full Text PDF

GM-CSF and IL-21-armed oncolytic vaccinia virus significantly enhances anti-tumor activity and synergizes with anti-PD1 immunotherapy in pancreatic cancer.

Front Immunol

January 2025

Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.

View Article and Find Full Text PDF

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

Survival of viruses in water microcosms.

Sci Total Environ

January 2025

Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:

Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!