Regulatory T cells (Tregs) are an integral part of peripheral tolerance, suppressing immune reactions against self-structures and thus preventing autoimmune diseases. Clinical approaches to adoptively transfer Tregs, or to deplete Tregs in cancer, are underway with promising first outcomes. Because the number of naturally occurring Tregs (nTregs) is very limited, studying certain Treg features using in vitro induced Tregs (iTregs) can be advantageous. To date, the best although not absolutely specific protein marker to delineate Tregs is the transcription factor FOXP3. Despite the importance of Tregs including non-redundant roles of peripherally induced Tregs, the protocols to generate iTregs are currently controversial, particularly for human cells. This protocol therefore describes the in vitro differentiation of human CD4+FOXP3+ iTregs from human naïve T cells using a range of Treg-inducing factors (TGF-β plus IL-2 only, or their combination with retinoic acid, rapamycin or butyrate) in parallel. It also describes the phenotyping of these cells by flow cytometry and qRT-PCR. These protocols result in reproducible expression of FOXP3 and other Treg signature genes and enable the study of general FOXP3-regulatory mechanisms as well as protocol-specific effects to delineate the impact of certain factors. iTregs can be utilized to study various phenotypic aspects as well as molecular mechanisms of Treg induction. Detailed molecular studies are facilitated by relatively large cell numbers that can be obtained. A limitation for the application of iTregs is the relative instability of FOXP3 expression in these cells compared to nTregs. iTregs generated by these protocols can also be used for functional assays such as studying their suppressive function, in which iTregs induced by TGF-β plus retinoic acid and rapamycin display superior suppressive activity. However, the suppressive capacity of iTregs can differ from nTregs and the use of appropriate controls is crucial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226637 | PMC |
http://dx.doi.org/10.3791/55015 | DOI Listing |
Int J Mol Sci
January 2025
Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain.
Class IA PI3K p110δ and p110α subunits participate in TCR and costimulatory receptor signals involved in T cell-mediated immunity, but the role of p110α is not completely understood. Here, we analyzed a mouse model of the Cre-dependent functional inactivation of p110α (kinase dead) in T lymphocytes (p110αKD-T, KD). KD mice showed increased cellularity in thymus and spleen and altered T cell differentiation with increased number of CD4CD8 DP thymocytes, enhanced proportion of CD4 SP lymphocytes linked to altered apoptosis, lower Treg cells, and increased AKT and ERK phosphorylation in activated thymocytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Necroptosis, a type of programmed cell death, has been increasingly linked to cardiovascular disease development, yet its role in dilated cardiomyopathy (DCM) remains unclear. In this study, we analyzed the GSE5406 dataset from the GEO database to explore necroptosis-related prognostic signatures in DCM using LASSO regression. We identified five necroptosis-related genes (BID, CAMK2B, GLUL, HSP90AB1, CHMP5) that define a necroptosis-related signature with strong predictive value, evidenced by ROC curve areas of 0.
View Article and Find Full Text PDFEur J Immunol
December 2024
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Potassium ions (K) released from dying necrotic tumour cells accumulate in the tumour microenvironment (TME) and increase the local K concentration to 50 mM (high-[K]). Here, we demonstrate that high-[K] decreases expression of the T-cell receptor subunits CD3ε and CD3ζ and co-stimulatory receptor CD28 and thereby dysregulates intracellular signal transduction cascades. High-[K] also alters the metabolic profiles of T-cells, limiting the metabolism of glucose and glutamine, consistent with functional exhaustion.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
December 2024
Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
We investigated the mechanism whereby double-negative T cells (DNTs) regulate Treg/Th17 balance to promote the progression of liver fibrosis. Liver fibrosis was induced with carbon tetrachloride (CCl4) in mice. Mouse DNTs were isolated, amplified and injected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!