Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This protocol describes a scalpel loading-fluorescent dye transfer (SL-DT) technique that measures intercellular communication through gap junction channels, which is a major intercellular process by which tissue homeostasis is maintained. Interruption of gap junctional intercellular communication (GJIC) by toxicants, toxins, drugs, etc. has been linked to numerous adverse health effects. Many genetic-based human diseases have been linked to mutations in gap junction genes. The SL-DT technique is a simple functional assay for the simultaneous assessment of GJIC in a large population of cells. The assay involves pre-loading cells with a fluorescent dye by briefly perturbing the cell membrane with a scalpel blade through a population of cells. The fluorescent dye is then allowed to traverse through gap junction channels to neighboring cells for a designated time. The assay is then terminated by the addition of formalin to the cells. The spread of the fluorescent dye through a population of cells is assessed with an epifluorescence microscope and the images are analyzed with any number of morphometric software packages that are available, including free software packages found on the public domain. This assay has also been adapted for in vivo studies using tissue slices from various organs from treated animals. Overall, the SL-DT assay can serve a broad range of in vitro pharmacological and toxicological needs, and can be potentially adapted for high throughput set-up systems with automated fluorescence microscopy imaging and analysis to elucidate more samples in a shorter time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226465 | PMC |
http://dx.doi.org/10.3791/54281 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!