Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)-dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247742 | PMC |
http://dx.doi.org/10.1126/science.aah4307 | DOI Listing |
Bone Res
January 2025
Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.
Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic.
Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Introduction: Small cell lung cancer (SCLC) is characterized by significant heterogeneity and plasticity, contributing to its aggressive progression and therapy resistance. Autophagy, a conserved cellular process, is implicated in many cancers, but its role in SCLC remains unclear.
Methods: Using a genetically engineered mouse model ( ; ; GFP-LC3-RFP-LC3△G), we tracked autophagic flux to investigate its effects on SCLC biology.
Am J Clin Exp Urol
December 2024
Department of Urology, Icahn School of Medicine at Mount Sinai New York, NY, USA.
Epithelial-mesenchymal transition (EMT) is a dynamic process of lineage plasticity in which epithelial cancer cells acquire mesenchymal traits, enabling them to metastasize to distant organs. This review explores the current understanding of how lineage plasticity and phenotypic reprogramming drive prostate cancer progression to lethal stages, contribute to therapeutic resistance, and highlight strategies to overcome the EMT phenotype within the prostate tumor microenvironment (TME). Emerging evidence reveals that prostate tumor cells can undergo lineage switching, adopting alternative growth pathways in response to anti-androgen therapies and taxane-based chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!