In this paper, the 200mm silicon-on-insulator (SOI) platform is used to demonstrate the monolithic co-integration of hybrid III-V/silicon distributed Bragg reflector (DBR) tunable lasers and silicon Mach-Zehnder modulators (MZMs), to achieve fully integrated hybrid transmitters for silicon photonics. The design of each active component, as well as the fabrication process steps of the whole architecture are described in detail. A data transmission rate up to 25Gb/s has been reached for transmitters using MZMs with active lengths of 2mm and 4mm. Extinction ratios of respectively 2.9dB and 4.7dB are obtained by applying drive voltages of 2.5V peak-to-peak on the MZMs. 25Gb/s data transmission is demonstrated at 1303.5nm and 1315.8nm, with the possibility to tune the operating wavelength by up to 8.5nm in each case, by using metallic heaters above the laser Bragg reflectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.030379 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!