Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although optical absorption is an intrinsic materials property, it can be manipulated through structural modification. Coherent perfect absorption increases absorption to 100% interferometrically but is typically realized only over narrow bandwidths using two laser beams with fixed phase relationship. We show that engineering a thin film's photonic environment severs the link between the effective absorption of the film and its intrinsic absorption while eliminating, in principle, bandwidth restrictions. Employing thin aperiodic dielectric mirrors, we demonstrate coherent perfect absorption in a 2 μm thick film of polycrystalline silicon using a single incoherent beam of light at all the resonances across a spectrally flat, octave-spanning near-infrared spectrum, ≈800-1600 nm. Critically, these mirrors have wavelength-dependent reflectivity devised to counterbalance the decline in silicon's intrinsic absorption at long wavelengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.42.000151 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!