This study tested for neural representations of valence that are shared across visual and auditory modalities referred to as modality-general representations. On a given trial participants made either affective or semantic judgments of short silent videos or music samples. For each modality valence was manipulated at three levels, positive, neutral, and negative, while controlling for the level of arousal. Whole-brain crossmodal identification of affect indicated the presence of modality-general valence representations that distinguished 1) positive from negative trials (signed valence) and 2) valenced from non-valenced trials (unsigned valence). These results generalized across the two tasks. Brain regions that were sensitive to valence states in the same way for both modalities were identified by searchlight analysis of fMRI data by comparing the correlation of voxel responses to the same and different valence conditions across the two modalities. These analyses identified seven clusters that distinguished signed valence, unsigned valence or both. Signed valence was represented in the precuneus, unsigned valence in the bilateral medial prefrontal cortex, superior temporal sulcus (STS)/postcentral, and middle frontal gyrus (MFG) and both types were represented in the STS/MFG and thalamus. These results support the idea that modality general valence is represented in a network of several locations throughout the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2017.01.002DOI Listing

Publication Analysis

Top Keywords

valence
13
signed valence
12
unsigned valence
12
modality-general valence
8
videos music
8
fmri data
8
valence represented
8
representations
4
representations modality-general
4
valence videos
4

Similar Publications

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

The efficacy of tumor-targeted therapeutics, engineered to engage specific cellular receptors to promote accumulation and penetration, is strongly influenced by the carrier's affinity for its target and the valency of binding molecules incorporated into the carrier. Previous research has primarily focused on improving targeting by augmenting the number of binding proteins on the carrier, inadvertently raising avidity without isolating the individual effects of binding strength and valency. Herein, we precisely evaluate the impact of multivalency on tumor targeting with a recombinant approach to independently control valency, avidity, and size.

View Article and Find Full Text PDF

A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.

View Article and Find Full Text PDF

Valence State and Catalytic Activity of Ni-Fe Oxide Embedded in Carbon Nanotube Catalysts.

Nanomaterials (Basel)

December 2024

School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The catalytic activity of Ni-Fe oxide embedded in CNTs was investigated in terms of valence states and active oxygen species. Ni-Fe oxides were prepared by the sol-gel combustion process, and Ni-Fe oxides embedded in CNT catalysts were synthesized by the catalytic chemical vapor deposition (CCVD) method. The lattice structure of the Ni-Fe oxide catalysts was analyzed, and the lattice distortion was increased with the addition of Fe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!