Biosynthesis of eight-carbon volatiles from tomato and pepper pomaces by fungi: Trichoderma atroviride and Aspergillus sojae.

J Biosci Bioeng

Çanakkale Onsekiz Mart University, Engineering Faculty, Department of Food Engineering, 17020 Çanakkale, Turkey. Electronic address:

Published: April 2017

The aim of this study was to investigate the possibility of using tomato and red pepper pomaces for the production eight-carbon volatiles by Trichoderma atroviride and Aspergillus sojae. The fermentation of tomato and pepper pomace-based media by both moulds was conducted in shake flasks and bioreactors. Microbial growth behaviours and fermentation abilities of T. atroviride and A. sojae under both fermentation conditions were followed by microbial counting. The production of flavours from tomato and pepper pomaces by fungal metabolism was determined by gas chromatography-olfactometry, gas chromatography-mass spectrometry and sensory analysis. The results showed that T. atroviride grew faster than A. sojae, and the survival of T. atroviride in the tomato pomace was longer than that of A. sojae. However, T. atroviride grew slower than A. sojae in the pepper pomace. Eight-carbon flavour compounds, including (Z)-1,5-octadien-3-ol, 1-octen-3-ol, (E)-2-octenal and (E)-2-octenol, were produced by T. atroviride and A. sojae from the tomato and pepper pomaces. The highest production levels (265.55 ± 2.79 and 187.47 ± 0.92 μg kg) were observed for 1-octen-3-ol in the tomato fermentation by T. atroviride and A. sojae, respectively. The relationships between volatile compounds and their flavour characteristics in tomato and pepper pomaces were analysed using principal component analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2016.11.013DOI Listing

Publication Analysis

Top Keywords

tomato pepper
20
pepper pomaces
20
eight-carbon volatiles
8
tomato
8
trichoderma atroviride
8
atroviride aspergillus
8
aspergillus sojae
8
t atroviride a sojae
8
t atroviride grew
8
pepper
7

Similar Publications

The MADS-RIPENING INHIBITOR-DIVARICATA1 module regulates carotenoid biosynthesis in nonclimacteric Capsicum fruits.

Plant Physiol

January 2025

Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China.

Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient.

View Article and Find Full Text PDF

Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols.

Microorganisms

December 2024

UPIZ "Educational and Research Laboratory"-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria.

This review describes the enhanced classification of polyphenols into flavonoids, lignans, phenolic acids, stilbenes, and tannins. Its focus is the natural sources of polyphenols and an in-depth discussion of their antibacterial, antifungal, and antiviral activity. Besides a broad literature overview, this paper contains authors' experimental data according to some daily consumed vegetables such as tomatoes, different varieties of onion, garlic, parsley, and cayenne pepper and the probable relation of these activities to polyphenols.

View Article and Find Full Text PDF

Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms.

Biology (Basel)

December 2024

Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China.

The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation.

View Article and Find Full Text PDF

Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China.

Sci Rep

January 2025

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.

Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.

View Article and Find Full Text PDF

Due to the small and irregular shapes of vegetable seeds, modeling them is challenging, and the imprecision of physical parameters hinders the performance of vegetable seeders, impeding simulation development. In this study, seeds of cucumber, pepper, and tomato were seen as examples. A 3D point cloud reconstruction method based on Structure-from-Motion Multi-View Stereo (SfM-MVS) was employed to accurately extract 3D models of small and irregularly shaped seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!